

WILGER
SPRAYER &
LIQUID FERTILIZER
PARTS CATALOG
- METRIC -

REVISED JULY 2024

WORLD CLASS SPRAYING COMPONENTS

Visual Detection of Plugged Lines

FOR MORE INFORMATION VISIT

WWW.WILGER.NET

Row-by-Row Flowmeter

Units: Metric (Litres/Hectare)

©Copyright 2024 Wilger Industries Ltd. All rights reserved.

New & Featured Products 3-6
Dual-Spray 4+1 [DS41] Nozzle Bodies3 Quick-Flange Compact & Offset Nozzle Body Elbows3
COMBO-JET DX Series Spot Spray Nozzles3 30/50° & 30° Angled Nozzle Adapters4
New High-Flow 21/32" Nozzle Body Options5
New EFM Jet design & ORS parts5 ECU200 for EFM System Release6
Spraying Resources & Topics7-11
Combo-Jet Spray Nozzle Advantage & FAQ7
Differences between ER/SR/MR/DR/UR series7
Spray Quality, VMD & Droplet Size8 Double-Down & Multi-Angle Spraying - When & Why?8
How to Use Tip Wizard - First Time Users9
Spray Tip Selection Guide for:
Standard (Auto-Rate) Spray Systems9 Pulse Width Modulation (PWM) Spray Systems10
Double Nozzle (Double-Down or Multi-Angle) Spraying11
Reducing 'Nozzle run-on' with top-fed bodies
Increasing Coverage: Angled or double-down spraying 40,42
Spray Nozzles, Metering & Adapters 12-32
ER Series Overview, 80° & 110°12 SR Series Overview, 80° & 110°13
MR Series Overview, 80° & 110°
DR Series Overview , 80° & 110°15
UR Series Overview, 110°16
ER & DX Narrow Series Overview, 20°, 40° & 60°30 80° Nozzle Standard Charts (incl. ER/SR/MR/DR) 17-19
110° Nozzie Standard Charts (incl. ER/SR/MR/DR/UR) 20-22
LERAP (UK) Nozzle Ratings22
80° Nozzle Charts for PWM (Common Solenoid) 23-25
110° Nozzle Charts PWM (Common Solenoid)
COMBO-JET 3-hole Fertilizer Streamer (FS3) Caps 28-29 COMBO-JET Metering Orifices
Narrow Angle Nozzle Charts - Standard Charts
- ER Series Fine Spray Nozzles, 20°, 40° & 60°30
- DX Series Drift Redux Spray Nozzles, 20°, 40° & 60°.30
Cap & Nozzle Adapters, incl. for non-Wilger caps31
Slotted Nozzle Caps (for using insert-able tips)31 Flanged ER 80/110 Spray tip Capsules31
Double-Down, Y-splitter & Angled Nozzle Adapters31
Hose Barb, Threaded, Push-in-tube & Plug Caps32
Nozzle Strainers, Hose Drop, Extension & Other Caps16, 32
Wet Boom Nozzle Bodies33-39
Dual-Spray 4+1 [DS41] Nozzle Bodies
Combo-Jet Swivel Bodies (1-3 Outlets)
Square Lug Swivel Bodies (1-3 Outlets)
Square Lug Caps, Strainers35
Combo-Rate Saddles (Side Fed)
Combo-Rate II One-Way Saddles (Top/Bottom Fed)36
Combo-Rate II Two-Way Saddles (Top/Bottom Fed)36 Combo-Rate II Stacking Nozzle Bodies (Bottom Fed)37
Combo-Rate Body & Turret Replacement Parts37,44
Combo-Rate Thru, End, and Swivel Fence-row Bodies38
Combo-Rate Front, Side, & Top Turrets (3-5 Outlets) 38-39
Combo-Rate Double-Down Turrets

	Dry Boom Nozzle Bodies41-44
•	Compact Nozzle Bodies & Swivel Turret Adapters
	Sprayer Plumbing 44-51
	Sprayer Boom Clamps
Ü	Liquid Fertilizer Manifold Parts 52-54
が対した。	0-ring Seal Check Valves
	Liquid Fertilizer Monitoring55-63
るの日の経験では近代では、「大きなない」では、「大きない」では、「大きない」では、「大きない」では、「大きない」では、「大きない」では、「大きない」では、「大きない」では、「ちない」では、「ない、これ、「ない」では、「ない」では、「ない、「ない」では、「ない」では、「ない、「ない」では、「ない、これ、「ない」では、「ない」では、「ない、これ、「ない、これ、これ、「ない、これ、これ、これ、これ、これ、これ、これ、これ、これ、これ、これ、これ、これ、	FLOW VIEW Visual Ball Flow Indicators

For Terms and Conditions, visit www.wilger.net

Wilger products are sold to original equipment manufacturers and authorized distributors, and are available to end users through retail dealerships.

Warranties - Wilger warrants that its products are free of defects in material and workmanship and perform to each product's specifications. The foregoing warranties are in lieu of all other warranties, written or expressed, including, but not limited to, those concerning suitability for a particular purpose. Claims under these warranties must be made promptly within one (1) year after receipt of goods by the buyer. Any warranty action by the buyer must be expressly pre-authorized by Wilger.

Technical Assistance - Wilger personnel are available to provide technical assistance in the choice or use of products furnished to the buyer and will do so free of charge. Wilger assumes no obligation or liability for any such advice, or any consequences occurring as a result of the application of such advice. The buyer is solely responsible for the selection of the appropriate product(s) and the appropriate application to the intended end use.

Limitation of Liabilities - Except for claims for bodily injury, Wilger's liability for any and all claims arising out of the purchase of the product shall not exceed the billed or billable value of the product. In no case will Wilger be liable for any consequential damages or loss of profit, even if Wilger has been advised of the possibility of such damages.

NEW & FEATURED PARTS [Page 1]

WILGER Dual Spray 4+1 [DS41] Nozzle Bodies

The ultra-compact 'DS41' nozzle body integrates a single by-pass nozzle body (optional for spot spray or Dual PWM) as well as a robust 4-nozzle turret.

This new generation of nozzle bodies is designed to fit compact boom frames, providing the benefit of stacked nozzle bodies in a much smaller and robust package with new product designs to 'Right' Version

improve fit and function. 'Left' Version 41900-00

Spring-Lock Turret Positive Turret Positioning

41901-00

Ability to spray with one or both nozzles independent of eachother.

Super Compact Space Saving

Chemical & Acid Resistant

New Robust Design

> Compact for 10" spot spraying spacing

COMBO-RATE Boom End Flush Valves, QF100 Ultra Compact & Offset Elbows

A series of super compact fittings including the last spray nozzle body, full flush valve, and recirculation ports.

Super Compact **Boom Ends**

Cuts out Boom

Recirculating boom port

2x Stackable COMBO-RATE nozzle body port

Full ID ORS Flush Valve

nozzle body elbow

Looking to spray faster with your spot spray system?

Consider using the new 30° adapter to tolerate faster speeds

Engineered for

COMISO-JATO DX SPOT SPRAY **NOZZLES & 30° Nozzle Adapter**

Narrow-angle drift reduction nozzles for spot spraying

27361-00

DX60-04 PWM APPROVED

Available in 20° 40° 60° **Nozzle Angles**

Available in DX sizes -015 to -125

311 #40219-00 For Optical, Spot and Broadcast spraying on

30° Adapter For back or front, single nozzle spraying at 30°

TIP HEIGHT TRAVEL IMPORTANT!! Illustration for conceptual use only ¹Ensure spot spray look ahead is adjusted in your system, else misses can Plant Detection 'Detect-to-Spray' Window Spraying downward Spraying 30° Angle Backwards1

25cm nozzle spacing

NEW & FEATURED PARTS [Page 2]

COMBO-JET_® 30/50 Adapter

40442-00

COMBO-JET outlet to 30° & 50° front/back COMBO-JET outlets

-Quarter Turn-

Perfect for cereal-head fungicide & other applications benefiting from angled spray

Use it with the new DS41 nozzle body for angled spraying in tight sprayer boom frames

INSTA-JET insert for COMBO-JET

40262-00

The Insta-Jet insert snaps into any COMBO-JET1 nozzle to increase responsivity to PWM nozzle start and stop

What is high-responsivity spraying?

The Insta-Jet insert speeds up and extends the duration of optimal spray pattern by reducing the effective 'start' and 'stop' time required to produce a desired spray. This is especially important for spot spraying that has intermittent nozzle flow interruptions.

1Not compatible w/ UR series or with use of select nozzles/adapters

30° Angled Nozzle Adapters

Nozzle adapters give the ability to angle a nozzle forward or backward, depending on needs for crop-adapted spraying. Commonly outfitted on spot spraying systems to increase potential spray speed.

Improved performance at higher pressures

COMBO-RATE Manifolds

Replacing a yard sprayer manifold? Building your own yard or ATV sprayer?

For setups needing: Pres. Gauge Left/Right Wing(s) Spray Gun Pressure regulator valve

NEW 3-Hole Fertilizer Streamer (FS3) Nozzles

Precision molded & color-coded liquid fertilizer streamer caps for consistent liquid fertilizer with less plant burn.

> Includes metering orifice and deflector plate in a single part number for easy ordering.

50cm 17cm

Available in sizes for 0.400L/min - 7.5L/min

Use Tip Wizard for Fertilizer Streaming Nozzle Selection

Simply input your intended application rate(s), speed, nozzle spacing and you are well on your way to finding the best fertilizer streamer nozzle for your spray applications.

NEW & FEATURED PARTS [Page 3]

COMBO-RATE® Top Turrets & Double-Down

A top take-off turret changes the orientation of the module for larger PWM solenoids. The top-turret is available with new double-down spray outlets.

COMBO-RATE top-turrets are compatibility with all stacking COMBO-RATE parts.

High Flow Nozzle Bodies (21/32")

Nozzle bodies for 21/32" high flow inlet holes available in COMBO-JET, COMBO-RATE and new

COMBO-RATE® Angled End Body for Fence-row spraying

41137-00

A new COMBO-RATE end body that provides a swivel joint that is available to be locked in 15° increments¹ for crop adapted spraying or fence-row nozzle spraying.

Perfectly paired with the new COMBO-RATE Boom End Flush Valve for a compact and protected fence-row

nozzle

¹Note on adjust-ability - Some sprayer manufacturers choose to have swivel end bodies permanently glued to position/angle. These swivel end bodies would NOT be adjustable, and removal of glue and re-adjustment would void warranty.

Quick Flange Sprayer Boom Fittings

The sprayer boom fittings for the next generation of sprayers, equipped to improve equipment efficiency and application consistency.

Easy Flange

Boom End

New O-Ring Seal Fittings, Assemblies & Kits

3/8" to 1'

hose sizes available

attaches to any ORS

fitting

20576-02

50 Mesh strainer

cartridge

¹Easier removal & insertion shipping in 2024 20509-00 ORS-M to Double Push-in-tube

20549-00 ORS to Square Lug Outlet for iaŭid Fertilizer_

NOTE: Ensure proper strain relief or mounting is added to ensure minimized stress on fitting ioints in complex manifold configurations

NEW & FEATURED PARTS [Page 4]

Wilger Electronic Flow Monitoring System ECU200 Release

A new compact ECU that includes the first 16CH node for more compact systems

ECU200 Series Kit (#20606-00) includes:

#20606-01 ECU ONLY

Back View: New position for ECU Serial Number

(9 digit serials now used)

Connects the battery harness to the ECU

12v battery harness #20603-02

> Antenna #20603-03

4x #20585-00

#20606-02 Connects 'Node 1' quad-sensor harnesses A/B/C/D

What about other EFM parts? All parts beyond this kit are shared between ECU100 and ECU200 parts.

Wilger Electronic Row-By-Row Flow Monitoring System

The serviceable flowmeter designed & built specifically for agricultural chemical & liquid applications

Fittings Swivel 360°

Modular Design for **Any Size Equipment**

High Accuracy **Flowmeter**

Wilger Product Literature & Tools

Wilger provides free printed product literature, prices lists and tools. Request a copy today. All brochures are also available at www.wilger.net

Tip Wizard Updates

Tip Wizard has new features coming! Double-down spraying, spot spraying and more!

Tip Wizard aims to lead the industry as the best spray tip calculator for broadcast applications.

WHERE TO BUY WILGER PRODUCT To find a list of local dealers/retailers and distributors in your area, visit the WILGER.net 'WHERE TO BUY page, to easily enter your address to find local Wilger product.

The COMBO-JET. Spray Nozzle Advantage

MR110-06

Less plugging, as the path of flow always gets larger

40% longer strainer that snaps & seals into place

SR / MR / DR / UR 90% 75% 90%+ **Drift Reduction Series**

Cap color matched to flow rate

Super long-lasting stainless steel spray tip The most versatile spray tips for Pulse Width Modulation Systems (e.g. Capstan Pinpoint®/EVO®, Case AIM Command®, John Deere ExactApply®, IntelliSpray®, Raven Hawkeye®, & more)

Spray tip & cap are held together as one piece

Easy-to-read label

Best educational spray tip charts & tools provided to select the best spray tips

Combo-Jet tips use a modern pre-orifice & closed chamber design that produces significantly less drift, creates solid mass droplets, for maximum spray velocity and more meaningful spray.

Without needing consistent air induction for drift reduction,

Combo-Jet spray tips set the standard for Pulse Width Modulation (PWM) spraying system nozzles.

WILGER.NET has the most useful spray tip selection help in the world.

EXCEL-BASED CHARTS

COMBO-JET® ER/SR/MR/DR/UR Spray Tips - What is the difference?

The sliding scale of droplet size means at any flow rate, you can match your desired spray quality.

	Comparison Criteria	ER Series Extended Range	SR Series Small Reduction	MR Series Mid-Range Reduction	DR Series Drift Reduction	UR Series Drift Reduction
	Spray Tip Design	Conventional Flat Fan	Pre-orifice Drift Reduction	Pre-orifice Drift Reduction	Pre-orifice Drift Reduction	Dual Chamber
	Spray Quality @40PSI	Medium	Coarse	Extremely Coarse	Extremely Coarse	Ultra-Coa
	Droplet Size¹ @40PSI	Smallest (246µ VMD¹)	Medium (371μ VMD¹)	Large (474µ VMD¹)	Very Large (529µ VMD¹)	Ultra Coarse (63
質がなる	% <141μ² % <600μ³	20% of volume < 141µ 94% of volume <600µ	8% of volume < 141µ 89% of volume <600µ	4% of volume < 141μ 74% of volume <600μ	2% of volume < 141μ 64% of volume <600μ	UR spray tips are speci designed for certain chen that require exceptional
100	Drift Potential	Most likely to drift	Lower drift potential	Major reduction in drift	Very low drift potential	They are not be to be rep spray tip series that are no
	Coverage	Best	Excellent	Very good	Good	on the chemical label. up-to-date label in

¹Based on an XX110-06 nozzle @ 40 psi (2.75 BAR)

²Droplets smaller than 141µ are more likely to drift. 141µ is used as a standard for estimating driftable fines.

³Droplets smaller than 600μ provide better coverage. Droplets > 600μ consume more spray volume, reducing overall coverage

er Drift Red.

oarse 633µ VMD1)

ecialty spray tips, emical applications nal drift reduction.

replaced with other not approved to be el. Always follow I information.

Refer to chemical application label for

More information available at www.v

More on Page 30

Selecting the Correct Spray Quality & Droplet Size

Diliva Ellery

Generally speaking, smaller droplets deposit on the target more effectively than larger droplets, but larger droplets will drift less. So, when balancing drift control and efficacy, ensure to follow chemical labels and guidelines to designate the required spray quality and droplet size.

Where to find target spray quality or droplets size?

Depending on the chemical, as well as the different methods and modes of applications, some chemical labels may have less/more information. In general, chemical labels will have a description of how it should be applied, in the form of an ASABE spray classification recommendation, or a minimum spray classification (e.g. Spray at least ASABE Coarse). Some chemical label will also stipulate which nozzles can be used.

Application Information:

• Water Volume: Minimum 22 L per acre.

Minimum volume requirement on chemical label

Reference max pressure for conventional nozzles like ER series. Try avoid conventional (non-drift reduction) spray tips.

• Nozzles and Pressure: 30 to 40 psi (210 to 275 kPa) when using conventional flat fan nozzles.

Low drift nozzles may require higher pressures for proper performance. Use a combination of nozzles and pressure designed to deliver thorough,

even coverage of ASABE coarse spray. Droplet spectrum recommendation for balance of drift & coverage.

Example Spray Quality Chart by Type of Application

ASABE S-572.1 Classification Category	Color Code	Estimated VMD Range for Spray Quality*	Contact Insecticide & Fungicide	Systemic Insecticide & Fungicide	Contact Foliar Herbicide	Systemic Foliar Herbicide	Soil-Applied Herbicide	Incorporated Soil-Applied Herbicide	Fertilizer
Extremely Fine (XF)	Purple	Under 60							
Very Fine (VF)	Red	60-105							
Fine (F)	Orange	106-235							
Medium (M)	Yellow	236-340							
Coarse (C)	Blue	341-403							
Very Coarse (VC)	Green	404-502							
Extremely Coarse (XC)	White	503-665							
Ultra Coarse (UC)	Black	Over 665							

The above table provides general guidelines regarding droplet size and spray quality used in most spray applications.

It is always required that you carefully read and follow updated chemical manufacturers application label and instructions.

*NOTE: VMD range does not classify spray quality. Always ensure spray quality is followed first. VMD is a supplementary figure, and it is normal that nozzles with similar VMD can be classified into different spray qualities.

What about Multi-Tip Spraying? When to consider Double-Down & Angled Spraying

Potential problems with HIGH FLOW applications (140L/Ha+) with a single spray nozzle: Spraying high volume out of a single tip can produce droplets that are 'too large" to be effective for coverage, which make for less effective spray application.

Using multiple spray tips at the same time can provide substantial gains in effective coverage into crops or applications that otherwise would be very difficult to cover; **however**, multi-tip spraying should not be used without reason.

A typical time to use **Multi-Angle** spraying:

For improved coverage on a vertical growing target (e.g. wheat) when you are needing to paint both sides of the plant with fungicide.

(e.g. Fusarium Head Blight)

A typical time to use **Double-Down** spraying:

For high rate applications that rely on consistent coverage in a dense canopy. Use nozzles to produce a meaningful mix of coarser and finer spray to hit different levels of the canopy.

Pairing already-owned nozzles to make a dual nozzle pair:

Much of the time, an operator already has 1-2 nozzles on the sprayer that could be stacked as a pair, so it is an effective way to use existing nozzles to improve spray application with very little cost.

conventional nozzles like ER series.

B

A First-timer's look at Tip Wizard

Beginner's Guide to using Tip Wizard

- Choose application units, spray system type, and search function (e.g. Search for tips)
- **Enter** application rate, spraying speed¹, nozzle spacing, and spray tip angle². Since PWM systems can modulate flow by changing the spray duration, enter the MAX typical spraying speed ²Spray tip angle required is based on nozzle spacing and boom height. Always maintain 100% overlap.
- **Enter** target spray quality or target droplet size (microns).

<This is where Tip Wizard gets more useful>

Each chemical used in agricultural spraying has different spray quality requirements for best efficacy and also to maintain tolerable levels of driftable fines in ideal conditions. Using the droplet size (VMD) can allow a more advanced way to filter through series of tips. In the event a target spray quality is NOT possible, widening the spray quality to SEE ALL may be required. (e.g. targeting MEDIUM spray quality with nozzle sizes too large to produce M)

Where to find target spray quality or droplet size?

Depending on the chemical, as well as the different methods and modes of applications, some chemical labels may have less/more information. In general, chemical labels will have a description of how it should be applied, in the form of an ASABE spray classification recommendation, or a minimum spray classification (e.g. Spray at least ASABE Coarse)

Minimum water requirement on chemical label by law

Water Volume: Minimum 22 L per acre.
 Nazzles and Pressure: [30 to 40 psi (210 to 275 kPa) when using conventional flat fan nozzles. In yavoid non-drift reduction lips.
 Low drift nozzles may require higher pressures for proper performance. Use a combination of nozzles and pressure designed to deliver thorough. [even coverage of ASABE coarse spray.] Displet spectrum recommendation for balance of drift & coverage.

Spray Categories as per ASABE S572.1 Classification

■ Extremely Fine ■ Very Fine ■ Fine ■ Medium ■ Coarse ■ Very Coarse □ Extremely Coarse

For the example chemical label application information, we'd have a classification of COARSE droplet size to follow. Considering the mode of application as well as the action (e.g. systemic herbicide vs. contact herbicide), you can choose the spray quality that would suit your conditions as best as possible. REMEMBER: the larger the droplet size/VMD, the coarser the spray, resulting in less coverage

For advanced users, using a VMD droplet size can further filter into a spray quality to make it easier to compare one series to another. For an example, we might find we typically have windier conditions, so try filter our results to stay around 375µ-400µ for our targeted droplet size.

Select the Best Spray Tip for your needs.

Based on the operating speed, pressure, spray quality, and while also gauging the last few columns (VMD, % drift, %

Picking Spray Tips for Auto-Rate Controlled Sprayers

1 STEP 1: Size Your Tip Since the application rate must be consistent, selecting a tip sized to the required rate over the actual sprayer speed range is critical. It is recommended to use Tip Wizard, as it will adjust the chart specifically for any application rate, not just common pairs of rate & speed.

Application Information:

FOCUS ON: SPEED & PRESSURE for a required APPLICATION RATE

Speed and pressure dictate a spray tip's ability to match a rate, and we must ensure our typical travel speed follows a reasonable pressure range. Meet your minimum speed (e.g. turning) within the operational pressure range. Having pressure too low in slow spots can lead to spotty coverage. Once you have referenced your chart to find your applied rate to your speed, you will find a certain nozzle size will be most effective.

*FOR PWM SPRAYERS (DUTY CYCLE): Since you have more control of your pressure, your sprayer will typically allow for a wider selection of tip size. Try to pick a size that allows a duty cycle of 60-80% at your typical sprayer speed, allowing sufficient speed up/down.

STEP 2: Filter to Your Spray Quality Each chemical will require a nozzle spray quality (for labels that do not, consult chemical representative or agronomist, or general guide based on mode of action), since you have selected your tip size (e.g. 110-04) you can now find the best option within the series available in that nozzle size. The ER/SR/MR/DR/UR series differ based on spray quality & drift reduction.

FOCUS ON: 'ASABE \$572' SPRAY CLASSIFICATION

droplets in ideal conditions

Since the pressure is dictating the spray quality, you'll want to filter out any tip series that cannot apply the recommended spray quality.

*FOR PWM SPRAYERS (Pressure Selection): Your spray quality can be changed with changing of sprayer pressure. This means instead of maintaining the required quality through a fixed operating pressure range, you can maintain a more flexible pressure range (provided duty cycle is OK).

STEP 3: Double Check It is worthwhile to review extra information provided for the spray tip, and re-evaluate if necessary. While the extra information in extrapolated from lab conditions without active ingredients, and cannot be considered actual, but it does lend to paint a picture of differences between series.

[ADVANCED] FOCUS ON: Spray % <141μ, Spray % <600μ, VMD (μ)

The extra columns reinforce the different spray qualities between different series, but also give the ability to make a rough spray plan for managing real life spraving conditions.

Spray % <141µ: % of total spray that can be considered driftable fines. In ideal conditions, it would be reasonable to assume this spray is NOT going where you want it to go. Due to evaporation before absorption, off-target spray or inversion, very small droplets will not likely hit target. Ideally have a spray tip that minimizes driftable fines, BUT ensure you maintain an acceptable level of coverage.

As speed, wind conditions & boom height increase, observed spray drift will increase substantially.

Spray % <600µ: % of total spray that can be considered small droplets. As % of these useful droplets lowers, coverage is reduced.

Consider it the 'other half' of the spray application, focusing on small droplets for coverage. Whereas you should maintain a low %<141µ, try to keep a %<600μ as high as possible, to maintain better coverage. As a very rough guideline with some usually chemical applications, aim for ~80+% <600μ for systemic applications; or ~90+% <600µ for contact applications; provided drift reduction levels are met and are satisfactory.

VMD (µ): The volumetric median diameter is the middle-point of spray distribution, and can be used to estimate between different series of the same size spray tips (tested on the same laboratory equipment). It is not for comparing between brands of tips. If you are familiar with using a VMD in tip searches, you can use it as an intensive filter to further focus in on tips that might work for your application. For example, if you are happy with spray application with the MR110-04 at ~3.5bar (346µ VMD), the spray quality might be comparable to an SR110-06 at ~3.5bar (337µ VMD). Bear in mind, VMD is used for educational purposes only, and should not dictate application.

For more Guides, Videos & Reading on proper nozzle selection, visit www.wilger.net

We aim to have all sorts of ways to help make the best educated decision in picking and using spray tips, so if there is something you find would be helpful, don't hesitate to reach out and ask. Often, we cannot provide EVERYTHING there is to know in our guides, as it can be overwhelming, so if you are wanting to get more information from an expert, contact WILGER.

Picking Spray Tips for Pulse Width Modulation (PWM) Sprayers

NOTE: PWM Spray systems differ in some respects (max flow capacity, pulse frequency (Hz), and other general variations in operation. This guide is a general guide that applies to most PWM spray systems, but for clarification would be based on a 10Hz solenoid, with a relative max flow capacity of 1.5 us gpm (this determines the relative pressure drop). Wilger does not own, produce, or have any ownership of PWM spray systems. All rights reserved by their owners.

O STEP 1: Size Your Tip Since the application rate must be consistent, selecting a tip sized to the required rate over the actual sprayer speed range is critical. It is recommended to use Tip Wizard, as it will adjust the chart specifically for any application rate.

Since PWM sprayers have control of sprayer pressure, a PWM sprayer will typically allow for a wider selection of tip sizes.

FOCUS ON: SPEED, PRESSURE & DUTY CYCLE (DC%) for a required APPLICATION RATE

Speed, pressure and respective duty cycle dictate a spray tip's ability to match a rate, and we must ensure our typical travel speed follows a reasonable pressure range. Having duty cycles <50% can degrade spray quality and consistency of spray swath, so it is always recommended to be above that. Try to pick a size that allows a duty cycle of 60-80% at your typical sprayer speed, allowing sufficient speed up/down. If a nozzle is approaching 90-100% at your maximum sprayer speed at your highest pressures, this can be a good indication that a nozzle is sufficiently sized.

Before you look at any coverage/spray quality characteristics of a nozzle, you should have solidified which nozzle SIZE will work best first.

🕗 STEP 2: Filter to Your Spray Quality Each chemical will require a nozzle spray quality (for labels that do not, consult chemical representative or agronomist, or general guide based on mode of action), since you have selected your tip size (e.g. 110-04) you can now find the best option within the series available in that nozzle size. The ER/SR/MR/DR/UR series differ based on spray quality & drift reduction.

FOCUS ON: 'ASARE \$572' SPRAY CLASSIFICATION

Since the pressure is dictating the spray quality, you'll want to filter out any tip series that cannot apply the recommended spray quality. Since PWM gives full control of sprayer pressure, this will usually filter the results to 1-2 nozzles within a size or series.

STEP 3: Pick your most flexible spray nozzle It is worthwhile to review extra information provided for the spray tip, and re-evaluate if necessary. While the extra information in extrapolated from lab conditions without active ingredients, and cannot be considered actual, but it does lend to paint a picture of differences between series.

The goal is to select a nozzle that can be applied at relatively moderate pressures (e.g. 3.5-4bar) when spray conditions are ideal, giving a means to reduce pressure to 2-3bar to have a 'drift reduction mode' that can be called upon when less ideal conditions arrive.

[ADVANCED] FOCUS ON: Spray % <141µ, Spray % <600µ, VMD (µ)

The extra columns reinforce the different spray qualities between different series, but also give the ability to make a rough spray plan for managing real life spraying conditions.

Spray % <141µ: % of total spray that can be considered driftable fines. In ideal conditions, it would be reasonable to assume this spray is NOT going where you want it to go. Due to evaporation before absorption, off-target spray or inversion, very small droplets will not likely hit target. Ideally have a spray tip that minimizes driftable fines, BUT ensure you maintain an acceptable level of coverage.

As speed, wind conditions & boom height increase, observed spray drift will increase substantially. With wind speeds of 19kph+, it can be expect to have driftable fine spray double. Windy conditions, higher drift sensitivity, and other environmental reasons are serious considerations for what might be an acceptable level of driftable fines.

By general chemical mode of action, you might have a reference point for % driftable fines, which might be generalized as:

Systemic Herbicides: Try maintain driftable fines <10%. (For very sensitive applications and herbicides, the requirement might go down to even 1.5-5%) Contact Herbicides & Fungicides: Try maintain driftable fines <15%. This allows for a consistent and high level of coverage without losing a great deal to driftable fines. It is often part of a good balance between driftable fines and coverage.

Spray % <600µ: % of total spray that can be considered small droplets. As % of these useful droplets lowers, coverage is reduced. Consider it the 'other half' of the spray application, focusing on small droplets for coverage. Whereas you should maintain a low %<141µ, try to keep a %<600μ as high as possible, to maintain better coverage. As a very rough guideline with some usually chemical applications, aim for ~80+% <600μ for systemic applications; or ~90+% <600µ for contact applications; provided drift reduction levels are met and are satisfactory.

VMD (µ): The volumetric median diameter is the middle-point of spray distribution, and can be used to estimate between different series of the same size spray tips (tested on the same laboratory equipment). It is not for comparing between brands of tips. If you are familiar with using a VMD in tip searches, you can use it as an intensive filter to further focus in on tips that might work for your application. For example, if you are happy with spray application with the MR110-04 at ~3.5bar (346µ VMD), the spray quality might be comparable to an SR110-06 at ~3.5bar (337µ VMD). Bear in mind, VMD is used for educational purposes only, and should not dictate application.

Quick-Start Example: 100 L/Ha @ 16 kph max, on 50cm spacing, with a PWM Spray System, applying SYSTEMIC HERBICIDE (glyphosate)

STEP 1: SIZE THE NOZZLE: Focus on Pressure/Speed Range/Duty Cycle (Try maintain ~60-80% duty cycle through full speed/pressure range)

For the best option for a tip size, we'll focus on the 110-04 size. (110-05 would also be a good nozzle size, but 110-06 starts getting too large for optimal PWM system use) It would apply 100L/Ha, 16kph anywhere between 2.2-4bar, allowing more than enough room into turn situations if turn compensation is available.

STEP 2: QUALIFY THE SPRAY

Since the chemical label for glyphosate requires a 'even coverage of **ASABE COARSE droplets**'. we will notice the ER110-04 is too fine, the SR fits at only lower pressures, the MR fits well, and the DR/UR being perhaps too coarse. We could also use a VMD of 350-400µ to filter out more. Note: The DR & UR series are coarser than required, but might be suitable for applicators who have to apply into more drift-sensitive areas.

For this example, we will single out the MR110-04 as our best tip to maintain a healthy flexibility to reduce spray drift on the go.

STEP 3: DOUBLE CHECK MR110-04 for max flexibility between

'IDEAL SPRAYING MODE' & 'DRIFT REDUCTION MODE' Ideal Condition Spraying @ 16kph: Drift Sensitive Spraying @ 16kph:

@3.5bar: COARSE Spray Class

@3.5bar: DUTY CYCLE: 81% / Excellent @2.5bar: DUTY CYCLE: 96% / OK @2.5bar: VERY COARSE Spray Class **@3.5bar % < 141µ: ~8%** ✓ Very Good **@2.5bar % < 141µ: ~6%** ✓ Excellent

Further considerations: Given the high level of coverage at higher pressures (4bar+), this same nozzle could be used for contact herbicides and fungicides to cover more applications.

_	Part No: 40291-04 Color, Red Screen No: 50 Mesh (#40250-00)									
Pres	Speed Range	DC @ 16 km/h	Class	VMD	<141	<600				
bar	km/h	%		μ	%	%				
1.5	3,2-12,9	>100	XC	469µ	2%	74%				
2	3.7-14.9	>100	VC:	429µ	4%	82%				
2.5	4.2-16.7	96	VC:	399µ	6%	87%				
3	4.6-18.3	87	E	374µ	7%	90%				
3.5	4.9-19.7	81	(0)	353µ	8%	92%				
4	5.3-21.1	76	Ċ	335µ	9%	93%				
4.5	5.6-22.4	72	0.	319µ	10%	94%				
5	5.9-23.6	68	e.	304µ	10%	95%				
5.5	6.2-24.8	65	c	291µ	11%	95%				

Picking Nozzles for Double Nozzle Spraying

Picking two spray tips isn't much different than a single tip. Since the sprayer has some means of adjust the flow to match a flow rate, simply pick a nozzle size that would supply the full rate, and then split it into parts that would provide the same flow rate. E.g. If a 110-10 nozzle size is required for an application, suitable pairs would be like a '110-06 + 110-05' or '110-05', as the cumulative size would apply the same rate as a single 110-10. Limit the size difference to two nozzle sizes to ensure consistent back pressure between both nozzles. (e.g. 110-08 +110-02 would not be ideal as the -08 might steal flow from the -02). ALWAYS enter the cumulative size of nozzles into the controller. Not just one of the nozzles. (e.g. if a 110-04 + 110-06 were used, a -10 size nozzle would be entered)

1 STEP 1: Size Your Tip Since the application rate must be consistent, selecting a tip sized to the required rate over the actual sprayer speed range is critical. It is recommended to use Tip Wizard, as it will adjust the chart specifically for any application rate, not just common pairs of rate & speed.

FOCUS ON: SPEED & PRESSURE for a required APPLICATION RATE

- *FOR PWM SPRAYERS (DUTY CYCLE): Since you have more control of your pressure, your sprayer will typically allow for a wider selection of tip size.

 Try to pick a size that allows a duty cycle of 60-80% at your typical sprayer speed, allowing sufficient speed up/down.
- 2 STEP 2: Filter to Your Spray Quality Each chemical will require a nozzle spray quality (for labels that do not, consult chemical representative or agronomist, or general guide based on mode of action), since you have selected your tip size (e.g. 110-04) you can now find the best option within the series available in that nozzle size. The ER/SR/MR/DR/UR series differ based on spray quality & drift reduction.

Exemple MR110-04 中 MR110-02 Spray Qualify Coarse*

Exempla 2x SR110-03
Spay Quality Coarse*

100 L/H

[PWH]
1855ph
255bar

*IMPORTANT: FOR PWM SPRAYERS (Pressure-drop through solenoid): Depending on the solenoid used, for larger nozzle sizes (or paired nozzle sizes) there will be greater pressure drop. So, when considering spray quality for the smaller nozzles in a pair, verify the pressure drop for the cumulative size as it will differ from the nozzles individually. With the pressure drop factor, cross-reference the spray quality of the smaller nozzles in the pair for their more realistic spray quality (after pressure drop). ALWAYS enter the joint nozzle size in the controller.

STEP 3: Double Check Just like the 'Quick-start guide to picking spray tips', refer to the extra information to qualify nozzles to ensure they will suit your application. Since the pair of nozzles are spraying a fraction of the total weight, there is some synergy between having one as a finer nozzle and the other coarser to produce a more meaningful mix of spray droplet sizes to get where they need to go.

[ADVANCED] FOCUS ON: Spray % <141μ, Spray % <600μ, VMD (μ)

The extra columns reinforce the different spray qualities between different series, but also give the ability to make a rough spray plan for managing real life spraying conditions.

Spray % <141µ: % of total spray that can be considered driftable fines. If one nozzle is producing more driftable fines than the other, but when averaging based on the flow, you'd want to ensure you are still at a tolerable driftable fines % given the application.

As speed, wind conditions & boom height increase, observed spray drift will increase substantially. This is especially the case with forward/backward facing

Spray % <600µ: % of total spray that can be considered small droplets. As % of these useful droplets lowers, coverage is reduced.

Since you are splitting a single 'large' nozzle into two smaller nozzles, you should take advantage of getting a much higher %<600 μ than possible with a single nozzle.

VMD (µ): As VMD is the middle point in the distribution of spray, and a pair of nozzles will have a blended VMD when both are considered, simply qualify a tip based on acceptable spray quality first, and take note of the two nozzles and

EXAMPLE: 220 L/ha Glufosinate (Contact Herbicide), on 50cm spacing, traveling 16 kph, using a PWM spray system

STEP 1: Using Tip Wizard (or nozzle charts), a 110-125 nozzle size would suffice for travel speed and pressure range. The ER110-125 is shown as an example. With this 110-125 nozzle size, we know a nozzle pair adding to a ~110-125 would be suitable for the application rate. (e.g 110-06 + 110-06) Either use the TIP WIZARD double-down function, or split the search into two parts that add up to the total application rate required (220L/ha)- e.g. 2x 110L/Ha. There is additional pressure drop through a solenoid, so keep that in mind when selecting nozzles as the spray quality will differ from nozzles operating separately.

STEP 2: By chemical label, Glufosinate is to be applied as a ASABE medium spray quality or coarser. Qualify spray nozzles suitable for chemical label requirement. Remember, if you cannot find a spray quality in the chart or in tip wizard, you will have to widen your spray quality search or split to a double down configuration that can provide closer to the ideal spray quality.

Example Result:

Cambis-Jet 9 SR110-06 Part No. 40387-05 Color, Grey Screen No. Not Bequired							ИВО	Combo-Je Part No: 402 Sojeen No: N	87-05 0		☆		
Pres	Speed Range	DC @ 16 km/h	Class	VMD	<141	<600	Pres	Speed Range	DC @ 16 km/h	Class	VMD	<141	<600
bar	lom/h	8		μ	*		bar	km/h	8		μ	15	1.5
1.5	3.6-14.5	>100	XC.	539µ	1%	56%	1.5	3.5-14.5	>100	XC.	539µ	1%	56%
2	4.2-16.7	96	XC	494µ	2%	69%	2	4.2-16.7	96	XC	494µ	2%	69%
2,5	4.7-18.7	86	VC	460µ	4%	77%	2,5	4.7-18.7	86	VC	460µ	4%	77%
3	5.1-20.4	78	VC	431µ	5%	82%	3	5.1-20.4	78	VC	431µ	5%	82%
3.5	5,5-22.1	73	90	407µ	6%	85%	3,5	5,5-22.1	73	90	407µ	6%	85%
4	5.9-23.6	88	- 0	387μ	8%	87%	4	5.9-23.6	88	- 0	387μ	8%	87%
4.5	6.3-25.0	64	ď	368µ	9%	89%	4.5	6.3-25.0	64	ď	368µ	9%	89%
5	6.6-26.4	61	0	352µ	-9%	90%	5	6.6-26.4	61	0.	352µ	-9%	90%

STEP 3: Qualify nozzle pair based on spray quality, and pick based on most suitable % driftable fines (ideally <15% <141 μ) and % coverage factor (ideally near or greater than 90% <600 μ)

Double-Down SR110-06 would provide upwards of 9%+ more volume made of small droplets (%<600µ), while nominally decreasing driftable fines (%<141µ) especially at lower pressures.

The spray quality is within the 'coarse' spray quality, just outside MEDIUM spray quality. An ER110-06 series could be replaced for one of the SR110-06 to provide a mix of even finer spray into the dual nozzle setup.

Total nozzle flow would be the same as a 110-12, which would be nominally smaller than a 110-125.

COMBO-JET ER80° & ER110° Series Spray Tips

The ER series spray tip is a conventional flat fan nozzle, emphasizing consistent spray pattern with relatively fine spray. All ER nozzles are manufactured with a stainless steel tip.

Longer Lasting Stainless Tips

Less **Plugged Nozzles**

Perfect for PWM Sprayers

Consistent Pattern at Lower pres.

Acid Resistant **Nozzles**

COMBO-JET® ER80° ASABE S572.1 Spray Quality Chart

Pressure (bar)	1.5	1.75	2	2.5	3	3.5	4	4.5	5	5.5	6
ER80-01	F	F	I.	F	F	F	F	F	F	F	F
ER80-015	F	F	Щ	F	Щ	F	F	LL.	F	F	F
ER80-02	F	F	Щ	F	Щ	F	F	F	F	F	F
ER80-025	M	M	F	F	F	F	F	F	F	F	F
ER80-03	M	M	F	F	F	F	F	F	F	F	F
ER80-04	M	M	M	M	F	F	F	F	F	F	F
ER80-05	C	C	M	M	M	M	M	M	F	F	F
ER80-06	C	C	С	C	C	M	M	M	M	M	M
ER80-08	VC										
ER80-10	XC	XC	XC	C	C	C	M	M	M	F	F
ER80-125		XC	XC	VC	С	C	C	C	C	M	M
ER80-15		XC	XC	XC	C	C	C	M	M	M	M
ER80-20		UC	XC	XC	XC	VC	C	C	C	C	M
ER80-25		UC	XC	XC	XC	VC	C	C	C	C	M
ER80-30		UC	UC	XC	XC	XC	XC	XC	VC	VC	C
ER80-40				XC	XC	XC	XC	XC	XC	VC	VC
ER80-50				XC	XC	XC	XC	XC	XC	VC	VC
ER80-60				XC	XC	XC	XC	XC	XC	VC	VC

COMBO-JET® FR110° ASARF S572.1 Spray Quality Chart

GOINIDO-JET	Eni	IU A	JADL	3312	.ı əp	ıay Qı	uanty	Ullai	L	
Pressure (bar)	1.5	2	2.5	3	3.5	4	4.5	5	5.5	6
ER110-01	F	F	F	F	F	Æ	F	F	F	F
ER110-015	F	F	F	F	F	F	F	F	F	F
ER110-02	F	F	F	F	F	F	F	F	F	F
ER110-025	F	F	F	F	F	F	F	F	F	F
ER110-03	F	F	F	F	F	F	F	F	F	F
ER110-04	M	M	M	F	F	F	F	F	F	F
ER110-05	M	M	M	F	F	F	F	F	F	F
ER110-06	C	M	M	M	M	M	F	F	F	F
ER110-08	C	C	M	M	M	M	F	F	F	F
ER110-10	C	C	C	C	M	M	M	M	F	F
ER110-125	XC	XC	XC	VC	C	C	C	C	C	C
ER110-15	XC	XC	XC	VC	C	C	C	C	C	C
ER110-20	UC	XC	XC	XC	XC	XC	VC	VC	C	C
ER110-25	UC	XC	XC	XC	XC	XC	VC	VC	C	C
ER110-30	UC	XC	XC	XC	XC	XC	XC	XC	VC	VC

COMBO-JET® ER Series Specifications

Approved for PWM Spray Systems Compatible with all PWM Spray systems/Hz.

Operating Pressure 1.5-7 bar

Flat Fan Nozzle Type Conventional Flat Fan

Nozzle Materials Spray Tip: Stainless Steel O-ring: FKM, 13mm x 3mm #40260-00 (viton avail.) Cap: Glass-reinforced Polypropylene

ASABE Spray Classification

(ASABE S572.1 Standard)

Spray quality is categorized based on Dv0.1 and VMD droplet sizes. Objective testing data (by 3rd party), from spray spectrum recording equipment (without wind tunnel use), has been used to classify spray quality for this chart. Chart shown includes spray quality at lested data points as well as extraondated data points. extrapolated data points.

Fine (F) Medium (M) Coarse (C)

Very Coarse (VC) Extremely Coarse (XC)
Ultra Coarse (UC)

Tips sized up to 110-06 verified on Phase Doppler Particle Analyzer (PDPA); tips sized over 110-06 verified on Malverr

Optimal Spray Tip Height

COMBO-JET SR80° & SR110° Series Spray Tips

The SR series spray tip is a closed-chamber, pre-orifice drift reduction nozzle, emphasizing a first stage of drift reduction. The SR series balances excellent coverage spray with significant drift reduction upwards of 50%+.

Longer Lasting Stainless Tips

Perfect

for PWM

Sprayers

Less **Plugged Nozzles**

Consistent Pattern at Lower pres.

Acid Resistant **Nozzles**

coverage while reducing driftable fines.

COMBO-JET® SR80° ASABE S572.1 Spray Quality Chart

Pressure (bar)	1.75	2	2.5	3	3.5	4	4.5	5	5.5	6
SR80-01	M	M	F	F	F	F	F	F	F	F
SR80-015	C	M	M	M	F	F	F	F	F	F
SR80-02	C	M	M	M	F	F	F	F	F	F
SR80-025	C	С	C	M	M	M	M	M	F	F
SR80-03	C	С	C	C	C	M	M	M	M	M
SR80-04	C	C	C	C	C	C	M	M	M	M
SR80-05	VC	C	C	C	C	С	С	С	M	M
SR80-06	VC	VC	VC	C	C	C	C	C	C	C
SR80-08	UC	UC	XC	XC	XC	XC	VC	VC	C	C
SR80-10	UC	UC	UC	XC	XC	XC	XC	XC	VC	VC
SR80-125	UC	UC	UC	XC	XC	XC	XC	XC	VC	VC
SR80-15	UC	UC	UC	UC	UC	XC	XC	XC	XC	XC
SR80-20	UC	UC	UC	UC	UC	XC	XC	XC	XC	XC
SR80-25	UC	UC	UC	XC	XC	XC	XC	XC	XC	XC
SR80-30	-	UC	UC	UC	XC	XC	XC	XC	XC	XC

COMBO-JET® SR Series Specifications

Approved for PWM Spray Systems Compatible with all PWM Spray systems/Hz.

Operating Pressure 1.75-7 bar

Flat Fan Nozzle Type Closed-Chamber, Pre-Orifice Drift Reduction

Nozzle Materials Spray Tip: Stainless Stee O-ring: FKM, 13mm x 3mm #40260-00 (viton avail.) Cap: Glass-reinforced Polypropylene

ASABE Spray Classification

(ASABE S572.1 Standard)

Spray quality is categorized based on Dv0.1 and VMD droplet sizes. Objective 3rd party testing data, from spray spectrum recording equipment (without wind tunnel use), has been used to classify spray quality for this chart. Chart shown includes spray quality at tested data points as well as extrapolated data points.

Fine (F) Medium (M) Coarse (C)

Very Coarse (VC) Extremely Coarse (XC)
Ultra Coarse (UC)

Tips sized up to 110-06 verified on Phase Doppler Particle Analyzer (PDPA); tips sized over 110-06 verified on Malvern.

COMBO-JET® SR110° ASABE S572.1 Spray Quality Chart

Pressure (bar)	1.75	2	2.5	3	3.5	4	4.5	5	5.5	6	
SR110-015	M	M	F	F	F	F	F	F	F	F	
SR110-02	M	M	F	F	F	F	F	Œ.	F	F	
SR110-025	M	M	M	M	F	F	F	F	F	F	
SR110-03	C	C	C	C	M	M	M	M	F	F	
SR110-04	C	C	C	C	M	M	M	M	M	M	
SR110-05	VC	C	C	C	C	C	M	M	M	M	
SR110-06	XC	VC	C	C	C	C	C	С	M	M	
SR110-08	UC	XC	XC	XC	VC	C	C	С	C	С	
SR110-10	UC	XC	XC	XC	XC	VC	C	С	C	С	
SR110-125	UC	UC	XC	XC	XC	XC	VC	С	C	C	
SR110-15	UC	UC	UC	UC	XC	XC	XC	XC	XC	XC	
SR110-20	UC	UC	UC	XC	XC	XC	XC	XC	XC	VC	
SR110-25	UC	UC	UC	XC	XC	XC	XC	XC	XC	VC	

LERAP Ratings for SR Series As of January 2021

☆☆☆ 75% ☆☆ 50% 1.0-1.5BAR

For the updated list of nozzles, visit www.wilger.net/LERAP More information on LERAP certification, process, and the most up to date listing of approved nozzles and their ratings, is available from the Health and Safety Executive (HSE), also available online @

https://secure.pesticides.gov.uk/SprayEquipment

COMBO-JET® SR Pre-orifices - by nozzle size [Replacement Only for SR series]

ľ	SR Size	-01	-015	-02	-025	-03	-04	-05	-06	-08	-10	-125	-15	-20	-25	-30
	SR80°	40285-015	40285-02	40285-025	40285-03	40285-03	40285-06	40285-06	40285-08	40285-10	40285-125	40285-20	40285-20	40285-25	40285-40	40285-40
	SR110°	-	40285-02	40285-025	40285-04	40285-04	40285-06	40285-06	40285-08S	40285-08S	40285-10S	40285-13S	40285-20	40285-25	40285-40	-

COMBO-JET MR80° & MR110° Series Spray Tips

The MR series spray tip is a closed-chamber, pre-orifice drift reduction nozzle, emphasizing a second stage of drift reduction. The MR series balances great coverage spray with significant drift reduction upwards of 75%+.

Longer Lasting Stainless Tips

Superior Drift Reduction

Perfect for PWM **Sprayers**

Consistent Pattern at Lower pres.

Acid Resistant **Nozzles**

FINE DRIFT COVERAGE REDUCTION

MR series is designed to produce relatively coarse spray with minimal drift.

COMBO-JET® MR80° ASABE S572.1 Spray Quality Chart

Pressure (bar)	2	2.5	3	3.5	4	4.5	5	5.5	6
MR80-005	M	M	ш	F	F	F	F	I.	F
MR80-0067	M	F	ш	F	F	F	F	I.	F
MR80-01	M	F	ш	F	F	F	F	I.	F
MR80-015	C	С	С	M	M	M	M	F	F
MR80-02	C	С	С	C	M	M	M	M	M
MR80-025	VC	VC	С	C	С	C	С	С	C
MR80-03	VC	VC	С	C	С	С	С	С	C
MR80-04	VC	C	С	C	С	С	С	С	C
MR80-05	XC	XC	VC	VC	VC	C	C	C	C
MR80-06	XC	XC	XC	VC	VC	VC	VC	C	C
MR80-08	UC	UC	UC	XC	XC	XC	VC	VC	C
MR80-10	UC	UC	UC	UC	XC	XC	XC	XC	XC
MR80-125	UC	UC	UC	UC	UC	UC	XC	XC	XC
MR80-15	UC	UC	XC	XC	XC	XC	VC	VC	C
MR80-20	UC	UC	UC	UC	XC	XC	XC	XC	XC
MR80-25	UC	UC	UC	UC	UC	UC	UC	UC	XC
MR80-30	UC	UC	UC	UC	UC	UC	UC	UC	XC
MR80-40	-	UC	UC	UC	UC	XC	XC	XC	XC
COMPO_IET®	MD1	10° A	CADE	C57	1 Cr	rov O	huality	, Cha	<u> </u>

COMBO-JET® MR110° ASABE S572.1 Spray Quality Chart

Pressure (bar)	2	2.5	3	3.5	4	4.5	5	5.5	6
MR110-015	С	С	М	M	M	F	F	F	F
MR110-02	C	C	M	M	M	M	F	F	F
MR110-025	C	C	С	C	C	M	M	M	M
MR110-03	VC	C	С	С	С	C	C	C	M
MR110-04	VC	C	С	С	С	С	C	C	M
MR110-05	XC	VC	VC	VC	C	С	C	C	C
MR110-06	XC	XC	XC	VC	VC	VC	VC	C	C
MR110-08	UC	UC	XC	XC	XC	XC	XC	VC	C
MR110-10	UC	UC	XC	XC	XC	XC	XC	VC	C
MR110-125	UC	UC	UC	UC	UC	UC	UC	XC	XC
MR110-15	UC	UC	UC	UC	UC	UC	UC	UC	UC
MD110 20	IIC	HC	HC	HC	HC	HC	IIC	٧٢	٧C

COMBO-JET® MR Pre-orifices - by size [Replacement Only]

	MR110-20	UC	XC	XC						
--	----------	----	----	----	----	----	----	----	----	----

COMBO-JET® MR Series Specifications
Approved for PWM Spray Systems

Compatible with all PWM Spray systems/Hz.

Operating Pressure 2-7 bar

Flat Fan Nozzle Type Closed-Chamber, Pre-Orifice Drift Reduction

Nozzle Materials Spray Tip: Stainless Steel Repl. O-ring: FKM, 13mm x 3mm #40260-00 (viton avail) Cap: Glass-reinforced Polypropylene

ASABE Spray Classification

(ASABE S572.1 Standard)

Spray quality is categorized based on Dv0.1 and VMD droplet sizes.

Objective 3rd party testing data, from spray spectrum recording equipment (without wind tunnel use), has been used to classify spray quality for this chart. Chart shown includes spray quality at tested data points as well as extrapolated data points.

Fine (F) Medium (M) Coarse (C)

■ Very Coarse (VC)
□ Extremely Coarse (XC)
■ Ultra Coarse (UC)

Tips sized up to 110-06 verified on Phase Doppler Particle Analyzer (PDPA); tips sized over 110-06 verified on Malvern.

Optimal Spray Tip Height

LERAP Ratings for MR Series As of January 2021									
MR110-04	☆☆☆ 75% ☆☆ 50% 1.0-2.5bar 2.6-3.5bar								
MR110-05	☆☆☆90% ☆☆☆75% 1.0-1.5bar 1.6-5.0bar								
MR110-06	☆☆☆ 90% ☆☆☆ 75% 1.0-1.5bar 1.6-5.0bar								

For the updated list of nozzles, visit www.wilger.net/LERAP

More information on LERAP certification, process, and the most up to date listing of approved nozzles and their ratings, is available from the Health and Safety Executive (HSE), also available online @

https://secure.pesticides.gov.uk/SprayEquipment

JKI Nozzle Ratings for MRs Visit www.wilger.net for updated charts

00	ombo of min 110 of mood by one [nopiacomont only]																
-005	-0067	-01	-015	-02	-025	-03	-04	-05	-06	-08	-10	-125	-15	-20	-25	-30	-40
40285-005	40285-007	40285-01	40285-015	40285-02	40285-025	40285-03	40285-04	40285-05	40285-06	40285-08		40285-125		40285-20	40285-25	40285-30	40285-40

COMBO-JET DR80° & DR110° Series Spray Tips

The DR series spray tip is a closed-chamber, pre-orifice drift reduction nozzle, emphasizing a third stage of drift reduction. The DR series balances good coverage spray with extremely low driftable fines, upwards of a 90% reduction in driftable fines.

Longer Lasting Stainless Tips

Superior Drift

Reduction

Perfect for PWM **Sprayers**

Consistent Pattern at Lower pres.

Acid Resistant **Nozzles**

with very minimal drift.

COMBO-JET® DR80° ASABE S572.1 Spray Quality Chart

OUIIIDO-JE I	DIIU	J AU	UDF ()	ı opı	ay Qu	unty v	viiai t	
Pressure (bar)	2	2.5	3	3.5	4	4.5	5	5.5	6
DR80-005	С	M	M	F	щ	F	щ	F	F
DR80-0067	C	C	M	M	M	F	щ	F	F
DR80-01	C	C	M	M	M	M	щ	F	F
DR80-015	VC	VC	С	C	С	С	С	С	C
DR80-02	XC	VC	VC	VC	С	С	С	С	C
DR80-025	XC	VC	VC	VC	С	С	С	С	C
DR80-03	XC	XC	VC	VC	VC	C	С	С	C
DR80-04	XC	XC	XC	XC	XC	VC	VC	C	C
DR80-05	XC	XC	XC	XC	XC	XC	VC	VC	VC
DR80-06	XC	XC	XC	XC	XC	XC	XC	XC	VC
DR80-08	UC	UC	UC	UC	UC	UC	UC	UC	UC
DR80-10	UC	UC	UC	UC	UC	UC	UC	UC	UC
DR80-125	UC	UC	UC	UC	UC	UC	UC	UC	UC
DR80-15	UC	UC	UC	UC	UC	UC	UC	UC	UC
DR80-20	UC	UC	UC	UC	UC	UC	UC	UC	UC
DR80-25	UC	UC	UC	UC	UC	UC	UC	UC	UC
DR80-30	UC	UC	UC	UC	UC	UC	UC	UC	XC

COMBO-JET® DR110° ASABE S572.1 Spray Quality Chart

Pressure	(bar)	2	2.5	3	3.5	4	4.5	5	5.5	6	
DR110-	-015	C	C	C	C	C	C	M	M	M	
DR110	-02	VC	VC	C	C	C	C	С	C	C	
DR110-	-025	VC	VC	C	C	C	C	С	C	C	
DR110	-03	XC	XC	VC	VC	C	C	С	C	C	
DR110	-04	XC	XC	VC	VC	VC	C	С	С	C	
DR110	-05	XC	XC	XC	XC	XC	XC	VC	VC	VC	
DR110	-06	XC	XC	XC	XC	XC	XC	XC	VC	VC	
DR110	-08	UC	UC	UC	UC	UC	UC	XC	XC	XC	
DR110	-10	UC	UC	UC	UC	UC	UC	UC	UC	UC	
DR110-	-125	UC	UC	UC	UC	UC	UC	UC	UC	UC	
DR110)-15	UC	UC	UC	UC	UC	UC	UC	UC	UC	

COMBO-JET® DR Pre-orifices - by tip size [Replacement Only]

-005	-0067	-01	-015	-02	-025	-03	-04	-05	-06	-08	-10	-125	-15	-20	-25	-30
40285-008	40285-007	40285-01	40285-015	40285-02	40285-025	40285-03	40285-04	40285-05	40285-06	40285-08	40285-10	40285-125	40285-15	40285-20	40285-25	40285-30

COMBO-JET® DR Series Specifications

Approved for PWM Spray Systems Compatible with all PWM Spray systems/Hz.

> Operating Pressure 2-7 bar

Flat Fan Nozzle Type Closed-Chamber, Pre-Orifice Drift Reduction

Spray Tip: Stainless Steel Repl. O-ring: FKM, 13mm x 3mm #40260-00 (viton avail) Cap: Glass-reinforced Polypropylene

ASABE Spray Classification

(ASABE S572.1 Standard)

Spray quality is categorized based on Dv0.1 and VMD droplet sizes.
Objective 3rd party testing data, from spray spectrum recording equipment (without wind tunnel use), has been used to classify soray quality for this chart. Chart shown includes spray quality at tested data points as well as extrapolated data points.

> Fine (F) Medium (M) Coarse (C)

Very Coarse (VC) Extremely Coarse (XC) Ultra Coarse (UC)

Tips sized up to 110-06 verified on Phase Doppler Particle Analyzer (PDPA): tips sized over 110-06 verified on Malvern

Optimal Spray Tip Height

For the updated list of nozzles, visit www.wilger.net/LERAP

More information on LERAP certification, and the most up to date listing of tested nozzles, visit https://secure.pesticides.gov.uk/SprayEquipment

JKI Nozzle Ratings for DR Series
Visit www.wilger.net for updated charts

COMBO-JET UR110° Series* Spray Tips

*U.S. Patent No. 10,603,681

The UR series spray tip is a dual-chamber, pre-orifice drift reduction nozzle, emphasizing the coarsest stage of drift reduction. The UR series is heavily suited to ultra-low driftable fines, emphasizing drift reduction over coverage.

Approved for Dicamba Mixes

Perfect

for PWM

Sprayers

Ultra Low Spray Drift

Solid Mass Spray **Droplets**

Acid Resistant Nozzles

UR series is designed to produce ultra coarse spray with extremely little drift.

COMBO-JET® UR110° ASABE S572.1 Spray Quality Chart

Pressure (bar)	2.5	3	3.5	4	4.5	5	5.5	6
UR110-025	UC	UC	UC	XC	XC	XC	XC	XC
UR110-03	UC	UC	UC	XC	XC	XC	XC	XC
UR110-04	UC	UC	UC	UC	UC	UC	UC	UC
UR110-05	UC	UC	UC	UC	UC	UC	UC	UC
UR110-06	UC	UC	UC	UC	UC	UC	UC	UC
UR110-08	UC	UC	UC	UC	UC	UC	UC	UC
UR110-10	UC	UC	UC	UC	UC	UC	UC	UC

COMBO-JET® UR Series* Pre-orifice Sets [Replacement only]

UR two-piece pre-orifices must be replaced with a new pair only. Correct orifices must be used for proper performance.								
-025	-03	-04	-05	-06	-08	-10		
40292-22	40292-23	40292-24	40292-25	40292-26	40292-28	40292-30		

		ngs for UR nuary 2021	Series
UR110-04		75% 2.0-3.0bar Ref. G-2184	50% 4.0-6.0bar Ref. G-2184
UR110-05	90% 2.0bar Ref. G-2185	75% 3.0-6.0bar Ref. G-2185	
UR110-06	90% 2.0-3.0bar Ref. G-2189	75% 4.0-6.0bar Ref. G-2189	

Optimal Spra	y Tip Height
25cm Nozzle Spacing	50cm Nozzle Spacing
25cm	50cm
80°	80°
Nozzles	Nozzzles 75cm
25cm	50cm
110°	110°
Nozzles	Nozziles 50cm

COMBO-JET® UR Series Specifications

Approved for PWM Spray Systems
Compatible with all PWM Spray systems/Hz.

Operating Pressure 2.5-7 bar

Flat Fan Nozzle Type Dual Closed-Chamber, Pre-Orifice Drift Reduction

> Nozzle Materials Spray Tip: Stainless Steel

Repl. O-ring: FKM, 13mm x 3mm #40260-00 (viton avail) Cap: Glass-reinforced Polypropylene

ASABE Spray Classification

(ASABE S572.1 Standard)
Spray quality is categorized based on Dv0.1 and VMD droplet sizes.
Objective 3rd party testing data, from spray spectrum recording
equipment (without wind tunnel use), has been used to classify spray
quality for this chart. Chart shown includes spray quality at tested data points as well as extrapolated data points

Fine (F) Medium (M) Coarse (C)

Very Coarse (VC) Extremely Coarse (XC) Ultra Coarse (UC)

UR Nozzles verified on Malvern.

COMBO-JET® Snap-in Strainers - What size(s) and when?

Wilger manufactures snap-in strainers that can be used to protect a spray nozzle and keep it spraying instead of getting plugged by residues or debris. They snap in to any COMBO-JET cap^{UR} or metering orifice so the cap handles as one piece.

Nozzle Size	100 Mesh	50 Mesh	16/25 Mesh
		JU MICSII	TO/ ZO WIGSTI
-01 or smaller	X		
-015	Χ		
-02	X	Х	
-025		Х	
-03		X	
-04		X	
-05		X	Χ
-06		X	Χ
-08 or larger	Nozzle st generally n		Х

^{UR}Strainers not compatible with UR series due to stacked pre-orifice

Stainless Steel Strainers

40251-00

Slotted Strainers

40249-00

Mesh Size	Slotted Strainer	Stainless Mesh	Color
100 mesh	-	#40251-00	Green
50 mesh	40249-00	#40250-00	Blue
25 mesh	40248-00	-	Yellow
16 mesh	40247-00	-	Gray

COMBO-JET 80° Spray Tips - Standard Sprayer Systems

Comprehensive rate & speed charts for any nozzle spacing/speed/rate is available on Tip Wizard. Try it today!

Disclaimer: These charts are published for comparative purposes to demonstrate the differences in the series of Combo-Jet® spray tips. Data used to populate this chart is extrapolated from third party testing data from a controlled conditions test with water as the testing solution. Actual spray applications with active chemical ingredients may change the spray dynamics and spray tip performance specifications. Wilger is not liable for any misuse or misrepresentation of this information, leading to (but not limited to) incorrect spray application, crop damage, or any other harm. (Not limited to human, livestock or environmental). Always verify these charts with the most recent charts found on the www.wilger.net, and ALWAYS follow chemical label nozzle requirements.

Nozzle Size &	Flow Rate L/	Boom		ication Rate on 50cm No					Classi Serie		i; VIVI		olet Siz		70<1		rift %); ° Serie		υμ (S		roplets ° Serie	
Angle	min	BAR	(Sprayer Sp	peed in km/	/h	Class	VMD	<141	<600		VMD	<141	<600		VMD	<141	<600		VMD	<141	<(
	Flow L/min	Boom BAR	Sprayer S 20L/Ha	Speed (L/Ha 30L/Ha	on 50cm sp 40L/Ha	oacing) @ 50L/Ha		0-005 VMD					#4028 <141									
	0.140	1.50	20L/на 8.4	5.6	40L/Ha 4.2	3.4	F	163		100%	Class	VIVID	< 141	<000	Class	VIVID	< 141	<000	Class	VIVID	< 141	< (
	0.151	1.75	9.0	6.0	4.5	3.6	F	156		100%					М	258	16%	100%	С	308	17%	10
80	0.161	2.00	10	6.4	4.8	3.9	F	150	45%	100%					М	240		100%		282	12%	
-005	0.180	2.50	11 12	7.2	5.4	4.3	F	141		100%					F	212		100%		245	17%	10
lozzles	0.197	3.00	13	7.9 8.5	5.9 6.4	5.1	F	133 127	58% 63%	100% 100%					F	192 177		100% 100%		218 198	22% 26%	10
	0.228	4.00	14	9.1	6.8	5.5	F	122	67%	100%					F	164		100%	F	181	30%	10
	0.242	4.50	15	10	7.3	5.8	F	118		100%					F	154		100%		168	33%	
	0.255	5.00	15	10	7.6	6.1	F	115	74%	100%					F	145		100%		157	36%	
	0.267	5.50 6.00	16 17	11	8.0 8.4	6.4	VF VF	112 109	77% 80%	100%					F	138 131		100% 100%	F	148 140	38% 41%	
	Flow	Boom		Speed (L/Ha							SR80	0-0067	#4028	8-0067				0-0067	DR80			
	L/min	BAR	20L/Ha	30L/Ha	40L/Ha	50L/Ha	Class	VMD		<600	Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<(
	0.187	1.50	11	7.5	5.6	4.5	F	193		100%					N/I	220	100/	1000/	C	334	100/	10
80	0.202	1.75 2.00	12 13	8.1 8.6	6.1 6.5	4.8 5.2	F	182 173	29%	100% 100%					M F	230 214	23%	100% 100%		313	13% 11%	
-0067	0.241	2.50	14	10	7.2	5.8	Ė	159	41%	100%					F	191	30%	100%		280	12%	10
ozzles	0.265	3.00	16	11	7.9	6.3	F	148		100%					F	174	36%	100%		256	15%	10
	0.286	3.50	17	11	8.6	6.9	F	140	53%	100%					F	161	41%	100%		237	17%	10
	0.305	4.00	18 19	12 13	9.2 10	7.3 7.8	F	133 127	61%	100% 100%					F	150 141	45% 49%	100% 100%		222	19% 21%	10
	0.341	5.00	20	14	10	8.2	F	122		100%					F	134	52%	100%		199	23%	10
	0.358	5.50	21	14	11	8.6	F	118		100%					F	127	55%	100%	F	190	24%	
	0.374	6.00	22	15	11	9.0	F	114		100%	000	20.04	" 400	20.04	F	122		100%		182	26%	
	Flow L/min	Boom BAR	Sprayer S 20L/Ha	Speed (L/Ha 30L/Ha	on 50cm sp 40L/Ha	50L/Ha	Class	30-01 VMD	#402 <141	70-01 <600	Class	30-01 VMD	#402 <141	<600	Class	30-01 VMD	#402 ~141	<600	Class	0-01 VMD	#402 <141	
	0.279	1.50	17	11	8.4	6.7	F	171	31%	100%	C	279	11%	97%	Uidoo	VIVID	×141	\000	Ulass	VIVID	×141	
	0.302	1.75	18	12	9.0	7.2	F	164	36%	100%	M	256	15%	97%								
80	0.322	2.00	19	13	10	7.7	F	158	40%	100%		238	19%	97%	M	222	22%	97%	С	316	9%	9
-01	0.360		22	14 16	11 12	8.6	F	148		100%		210	26%	97% 97%	F	200	28% 32%	97%	C M	286	12%	9
ozzles	0.395 0.426	3.00	24 26	17	13	10	F	140 134	52% 57%	100% 100%		190 174	32% 36%	98%	F	184 172	36%	97% 97%		264 247	15% 17%	9
	0.456	4.00	27	18	14	11	F	129	61%	100%		162	40%	98%	F	161	40%	97%	M	233	19%	9
	0.484	4.50	29	19	15	12	F	124	64%	100%		151	44%	98%	F	153	43%	97%	М	221	20%	10
	0.510		31	20	15	12	F	121	67%	100%		143	47%	98%	F	146	45%	97%	F	211	22%	10
	0.535 0.558		32 34	21 22	16 17	13 13	F	117 115	70% 73%	100% 100%		135 129	50% 53%	98% 98%	F	139 134	48% 50%	97% 96%	F	202 194	23% 24%	
	Flow	Boom		Speed (L/Ha			_	0-015		0-015					MR8		#4029		DR8			
	L/min	BAR	35L/Ha	50L/Ha	60L/Ha	75L/Ha	Class			<600		VMD		<600		VMD		<600			<141	
	0.419		14	10	8.4	6.7	F	195		100%												
00	0.452	1.75	16	11	9.0	7.2	F	187		100%		284	13%	94%		000	100/	0.40/	V/O	400	40/	-
80 -015	0.484	2.00	17 19	12 13	10 11	7.7 8.6	F	181 171	28% 32%	100% 100%		267 240	16% 20%	95% 96%	C	328 296	10% 13%	94% 96%	VC VC	422 392	4% 5%	89
lozzles	0.592	3.00	20	14	12	10	Ė	163		100%		221	24%	96%	C	273	15%	97%		369	6%	9
	0.640	3.50	22	15	13	10	F	157	39%	100%		206	27%	97%	М	254	17%	98%		351	7%	9:
	0.684	4.00	23	16	14	11	F	152	42%	100%		194	29%	97%	M	239	19%	98%		336	8%	9
	0.725	4.50	25	17	15	12	F	147	44%	100%		183	32%	98%	M	227	21%	98%	C	323	8%	9
	0.765 0.802	5.00 5.50	26 27	18 19	15 16	12	F	144 140	46% 48%	100% 100%		175 167	34% 36%	98% 98%	M F	216 207	22%	99%	C	312 303	9% 10%	9:
	0.838	6.00	29	20	17	13	Ė	137		100%		160	37%	98%	F	199	25%	99%	C	294	10%	9
	Flow	Boom	Sprayer S	Speed (L/Ha	on 50cm sp	pacing) @	ER8	30-02	#402	70-02		30-02	#402	88-02	MR	30-02	#402	90-02		0-02	#402	80-
	L/min	BAR	40L/Ha	50L/Ha	60L/Ha	70L/Ha	Class		<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<(
	0.558 0.603		17 18	13 14	11 12	10	F	181 176		100% 100%		272	13%	94%			-		\vdash		-	\vdash
80	0.645		19	15	13	11	F	172		100%			15%	95%	С	329	8%	94%	XC	459	3%	8
-02	0.721		22	17	14	12	F	164		100%		241		96%	С	307	10%	94%		431	4%	8
ozzles	0.790	3.00	24	19	16	14	F	159	40%	100%	M	227	22%	97%	С	290	12%	94%	VC	410	5%	8
	0.853		26	20	17	15	F	154		100%		215		97%	C	276	14%	95%	VC	392	5%	8
	0.912 0.967		27 29	22	18 19	16 17	F	150 147		100% 100%		206 198	27% 29%	97% 98%	M	265 255	15% 17%	95% 95%		378 366	6% 6%	8
	1.019		31	24	20	17	F	144		100%		191	30%	98%	M	247	18%	95%		355	7%	9
	1.069		32	26	21	18	F	142		100%		185	32%	98%	М	239	19%	95%	C	346	7%	9
	1.117		34	27	22	19	F	139	50%	100%	F	179	33%	98%	M	233	20%	96%	C	338	8%	9
	Flow L/min	Boom BAR	Sprayer S 50L/Ha	Speed (L/Ha 60L/Ha	on 50cm sp 70L/Ha	oacing) @ 80L/Ha	ER8 Class			'0-025 <600			#4028 <141	8-025 <600	MR8 Class	0-025 VMD	#4029 ~141	0-025 <600				
	0.698		50L/па 17	14	12	10	M	227		100%		VIVID	<141	<000	OldSS	VIVID	<141	<000	OldSS	VIVID	<141	<
	0.754		18	15	13	11	M	218		100%		314	9%	91%								
80	0.806	2.00	19	16	14	12	F	211	23%	100%	С	299	11%	92%	VC	430	4%	80%		463	3%	7
-025	0.901	2.50	22	18	15	14	F	199		100%		277	14%	94%	VC	396	6%	83%		440	4%	8
ozzles	0.987	3.00	24	20	17	15	F	189		100%		260	16%	95%	C	371	7%	86%		421	5%	8
	1.066 1.140	3.50	26 27	21 23	18 20	16 17	F	182 175		100%		247 236	18% 20%	95% 96%	C C	351 334	8% 9%	87% 88%		406 394	5% 6%	8
	1.209		29	24	21	18	F	170	36%	100%		226	21%	96%	C	320	10%	89%		383	6%	8
	1.274	5.00	31	25	22	19	F	165	37%	100%		218	23%	97%	Č	308	10%	90%	С	373	7%	8
	1.336	5.50 6.00	32	27 28	23 24	20 21	F	161 158	39%	99% 99%	F	211	24% 25%	97% 97%	C C	298	11%	91% 91%		365 358	7% 8%	8
			34													289	12%					8

NOTE: 'SR, MR, DR, UR spray tips include pre-orifice(s). Pre-orifices are not interchangeable between different spray tips of different series. Shown application information is based on water @ 26.5°C in a controlled environment and should not be considered actual. Information is provided for comparison to other Combo-Jet® spray tips, for educational purposes only. Repeat testing results can vary.

COMBO-JET 80° Spray Tips - Standard Sprayer Systems

Comprehensive rate & speed charts for any nozzle spacing/speed/rate is available on Tip Wizard. Try it today!

ASABE Spray Classification (ASABE S572.1 Standard)
Spray quality is categorized based on Dv0.1 and VMD droplet sizes.

Objective testing data (by 3rd party), from spray spectrum recording equipment (without wind tunnel use), has been used to classify spray quality for this chart. Extra data (e.g. VMD, etc.) can vary heatween testing equipment and method, and is provided as an educational resource only.

Extremely Coarse (XC)

Extremely Coarse (UC)

Ultra Coarse (UC)

VMD (Volume Median Diameter) The median droplet (in μ) for a sprayed volume. Half of the volume is made of droplets smaller, with half made up of droplets larger.

% <141μ (% Driftable Fines) Percentage of volume which is likely to drift. As wind & boom height increase, observed spray drift will increase substantially.

% of volume which is made up of 'small' droplets, useful for coverage As % of useful droplets lowers, overall coverage is reduced.

to 110-06 verific	ed on Phase Do	ppler Particl	e Analyzer (PDPA); tip	os sized over 110-06	verified on Malvern.	Ultra Coa	rse (L	JC) ` ´	h	alt made	up of	droplets	larger.	d	rift will	increas	e substa	ntially.	┸	overal	l coverag	ge is
	Flow	Boom		Speed (L/Ha				80-03		70-03		30-03					#402				#4028	
	L/min 0.838	1 50	60L/Ha 17	75L/Ha 13	100L/Ha 10	120L/Ha 8.4	Class	229	18%	<600 99%	Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	< 6
	0.905		18	14	11	9.0	M	221	20%	99%	С	366	7%	88%					\vdash			\vdash
80	0.967	2.00	19	15	12	9.7	F	215	22%	99%		349	9%	89%	VC	437	4%	80%	XC	485	3%	71
-03	1.081	2.50	22	17	13	11	F	205	25%	99%		321	11%	90%	VC	404	6%	84%		458	4%	75
lozzles	1.184	3.00	24	19	14	12	F	197	27%	99%	С	300	13%	91%	С	378	7%	86%		437	5%	78
	1.279	3.50	26	20	15	13	F	191	29%	99%	С	283	15%	92%	С	358	8%	88%		420	5%	80
	1.368	4.00	27	22	16	14	F	186	31%	99%	M	269	16%	93%	С	341	9%	89%		406	6%	82
	1.451	4.50	29	23	17	15	F	181	33%	99%	M	258	18%	93%	C	327	10%	90%		394	6%	8
	1.529	5.00	31	24	18	15	F	177	34%	99%	M	248	19%	93%	С	315	10%	91%		384	7%	8
	1.604		32	26	19	16	F	174		99%	M	239	20%	94%	C	304	11%	92%		374	7%	8
	1.675	6.00	34 Corover	27	20	17	F	170	36%	99%	M	232	21%	94%	C	295	12%	92%		366	8%	8
	Flow L/min	Boom BAR	75L/Ha	Speed (L/Ha 100L/Ha	125L/Ha	150L/Ha	Class	80-04 VMD	<141	70-04 <600		80-04 VMD	<141	88-04 <600		80-04 VMD		90-04		30-04 VMD	#4028 <141	.ou-
	1.12	1.50	18	13	123L/11a	8.9	M	246	17%	99%	Ulass	VIVID	VI41	\000	Uldas	VIVID	\141	~000	Uldas	VIVID	(141	
	1.21	1.75	19	14	12	9.6	M	238	19%	99%	С	368	5%	86%								T
80	1.29	2.00	21	15	12	10	М	232	20%	99%		352	7%	87%	VC	424	5%	80%	XC	547	2%	6
-04	1.44	2.50	23	17	14	12	M	221	23%	99%		327	9%	88%	С	397	7%	83%	XC	519	3%	6
Vozzles	1.58	3.00	25	19	15	13	F	212	25%	99%	С	306	11%	90%	С	376	8%	85%	XC	497	3%	7
	1.71	3.50	27	20	16	14	F	205	26%	99%		289	12%	91%	С	359	9%	86%		479	4%	72
	1.82	4.00	29	22	18	15	F	200	28%	99%		274	13%	91%	C	345	10%	87%		463	4%	7:
	1.93	4.50	31	23	19	15	F	195	29%	99%	M	260	14%	92%	C	333	11%	88%		451	5%	7
	2.04	5.00	33	24	20	16	F	190	30%	99%	M	248	15%	93%	C	322	11%	89%		439	5%	7
	2.14	5.50	34	26 27	21 21	17 18	F	187 183	31%	99%	M	238	16% 17%	93%	C	313 305	12%	90%		429 421	5%	7
	2.23 Flow	6.00 Boom		Speed (L/Ha				80-05	32% #402	70-05		228 30-05		88-05		80-05		90-05		30-05	5% #4028	80.
	L/min	BAR	100L/Ha	125L/Ha		175L/Ha		VMD	<141			VMD		<600		VMD		<600			<141	
	1.40	1.50	17	13	11	9.6	C	290	12%	95%	Uldoo	VIVID	VITI	\000	Uldoo	VIVID	\ T	~000	Uldas	VIVID	\ T	
	1.51	1.75	18	14	12	10	Č	279	14%	95%	VC	409	5%	81%			\vdash					\top
80	1.61	2.00	19	15	13	11	M	269	16%	95%		391	7%	82%	XC	508	3%	67%	XC	579	2%	5
-05	1.80	2.50	22	17	14	12	M	254	19%	95%		362	9%	85%	XC	478	4%	71%		550	2%	6
Nozzles	1.97	3.00	24	19	16	14	M	243	21%	95%	С	338	11%	86%	VC	455	5%	75%		528	3%	6
	2.13	3.50	26	20	17	15	M	234	23%	95%	С	318	12%	88%	VC	436	5%	77%	XC	510	3%	6
	2.28	4.00	27	22	18	16	M	226	24%	95%	С	300	13%	89%	VC	421	6%	79%		495	3%	69
	2.42	4.50	29	23	19	17	M	219	26%	95%		285	14%	89%	C	407	6%	81%		482	4%	7
	2.55	5.00	31	24	20	17	F	214	27%	95%		271	15%	90%	C	396	7%	82%		471	4%	73
	2.67	5.50	32	26	21	18	F	208	28%	95%	M	259	16%	91%	C	386	7%	83%		461	4%	74
	2.79	6.00	34 Caravar	27 Cpood (I /IIa	22	19	F	204	29%	95%	M	247	17%	91%	C	376	7%	84%		452	4%	7
	Flow L/min	Boom BAR	125L/Ha	Speed (L/Ha 150L/Ha	175L/Ha	200L/Ha	Class	80-06 VMD	<141	70-06 <600		30-06 VMD		88-06 <600		80-06 VMD		90-06		30-06 VMD	#4028 <141	
	1.68	1.50	16	13	17 JL/11a	10	C	316	13%	92%	UldSS	VIVID	< 141	<000	Ulass	VIVID	<141	<000	UldSS	VIVID	<141	< (
	1.81	1.75	17	14	12	11	Č	307	15%	91%	VC	438	4%	78%					\vdash			H
80	1.93	2.00	19	15	13	12	С	298	16%	91%		423	5%	80%	XC	530	2%	63%	XC	600	1%	5
-06	2.16	2.50	21	17	15	13	С	285	19%	91%		400	6%	83%	XC	504	3%	68%		575	2%	55
Nozzles	2.37	3.00	23	19	16	14	С	275	21%	91%	С	381	7%	85%	XC	483	4%	71%	XC	555	2%	58
	2.56	3.50	25	20	18	15	M	266	22%	90%		367	8%	86%	VC	466	4%	74%		538	2%	6
	2.74	4.00	26	22	19	16	M	259	24%	90%	C	354	9%	88%	VC	452	5%	76%		524	3%	63
	2.90	4.50	28	23	20	17	M	253	25%	90%		344	9%	89%	VC	440	5%	77%		512	3%	6
	3.06	5.00	29	24	21	18	M	247	26%	90%	С	334	10%	89%	VC	429	5%	79%		502	3%	66
	3.21	5.50	31	26 27	22	19 20	M	243	27%	90% 89%	C C	326	10%	90%	C	420	6%	80%		492	3%	68
	3.35 Flow	6.00 Boom	Sprayor 9	Speed (L/Ha	23 on 50cm er		M	238 80-08	28%	70-08		319	11%	91% 88-08		90.09	6%	90-08		484	4% #4028	6
	L/min	BAR	150L/Ha		250L/Ha		Class									VMD		<600			<141	
	2.23	1.50	18	13	11	8.9	VC		13%	87%	Oldoo	VIVID	X171	\000	Oldoo	VIVID	171	<u> </u>	Oldoo	VIVID	\141	
	2.41	1.75	19	14	12	9.6	C	336	15%	89%	UC	514	7%	54%								T
80	2.58	2.00	21	15	12	10	Č	321	17%				7%		UC	545	6%	63%	UC	623	3%	5
-08	2.88	2.50	23	17	14	12	M	296		92%		463				513		67%		596	4%	5
Vozzles	3.16		25	19	15	13	M	277	22%	93%	XC	437		68%	UC	488	8%	71%	UC		4%	5
	3.41	3.50	27	20	16	14	F	262		94%		414		71%			9%	73%		557	5%	6
	3.65	4.00	29	22	18	15	F	250						73%			10%			543	5%	6
	3.87	4.50		23	19	15	F	239				378		75%		438	11%			530	5%	6
	4.08	5.00	33	24	20	16	F	231	28%		VC	363	12%	77%				79%		519	6%	6
	4.28		34	26	21	17	F	223		96%		350	13%	78%		415		80%		509	6%	6
	4.47 Flow	6.00 Boom	Sprayer 9	27 Speed (L/Ha	21	18	F	216 80-10		96% 70-10	CD	337 30-10	13%	80% 88-10		405 80-10		81% 90-10		500 30-10	6% #4028	80
	L/min	BAR	200L/Ha	250L/Ha	300L/Ha	350L/Ha	Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	.0U·
	2.79	1.50	17	13	11	9.6	XC		9%	79%	Cidoo	VIVID	- 4	-2000	CidoS	VIVID	(141		01000	AIAID	(141	
	3.02		18	14	12	10	XC		11%		UC	535	6%	50%								T
80	3.22	2.00	19	15	13	11	XC		12%			516	6%		UC	550	5%	62%	UC	615	4%	5
	3.60	2.50	22	17	14	12	C	382	13%			485	7%	60%			6%	66%		592	5%	5
	3.95	3.00	24	19	16	14	Č	361	15%			460					6%	68%		574	5%	5
-10 Nozzles		3.50	26	20	17	15	С	345	16%			439	9%	68%	UC		7%	70%	UC	560	6%	6
	4.26	4 00	27	22	18	16	M	331	17%	87%	XC	420	9%	70%	XC	473	7%	72%	UC	547	6%	6
	4.56	4.00				17	M	319	18%	88%	XC	404	10%	72%	XC	461	8%	73%	UC	536	7%	6
	4.56 4.84	4.50	29	23	19	17																
	4.56 4.84 5.10	4.50 5.00	29 31	24	20	17	M	309	19%	88%		389		74%		451	8%	75%		527	7%	
	4.56 4.84	4.50	29						19% 20%	88%	VC	376		76%	XC	441	8% 9% 9%	75% 76% 77%	UC		7% 7% 7%	65 67 68

NOTE: 'SR, MR, DR, UR spray tips include pre-orifice(s). Pre-orifices are not interchangeable between different spray tips of different series. Shown application information is based on water @ 26.5°C in a controlled environment and should not be considered actual. Information is provided for comparison to other Combo-Jet® spray tips, for educational purposes only. Repeat testing results can vary.

COMBO-JET 80° Spray Tips - Standard Sprayer Systems

			0	0			per constitution of the	0.40-	11.400	0.40	0.5~	0.40	11 400	0.40	1112	0.40-	11 400	0 40	0.00	0.40	11 400	0.40
	Flow L/min	Boom BAR	Sprayer S 250L/Ha	Speed (L/Ha 300L/Ha	on 50cm sp 350L/Ha	acing) @ 400L/Ha	ER8	0-125 VMD	#4027 <141	'0-125 <600		0-125 VMD	#4028 <141	88-125 <600	MR8 Class	0-125 VMD		00-125 <600	DR8 Class		#4028 <141	30-125 <600
	3.77	1.75	18	15	13	11	XC	431	10%	79%	UC	529	6%	51%								
00	4.03	2.00	19 22	16	14	12	XC	416	11%	80%		513	7%	54%	UC	588	5%	55%	UC		4%	49%
80 -125	4.51 4.94	2.50 3.00	24	18 20	15 17	14 15	VC C	393 375	12% 13%	82% 84%	XC	486 464	8% 8%	59% 62%	UC	566 548	6% 7%	59% 61%	UC	605 587	4% 5%	53% 55%
Nozzles	5.33	3.50	26	21	18	16	С	360	14%	85%	XC	446	9%	65%	UC	534	7%	63%	UC	572	5%	57%
	5.70	4.00	27	23	20	17	C	348	15%	86%		429	10%	67%	UC	522	8%	65%	UC	560	6%	59%
	6.04	4.50 5.00	29 31	24 25	21 22	18 19	C	337 328	16% 16%	87% 88%		415 403	10% 11%	69% 71%	XC	511 502	8% 8%	67% 68%	UC	549 539	6% 6%	61% 62%
	6.68	5.50	32	27	23	20	M	320	17%	88%	VC	391	11%	72%	XC	493	9%	69%	UC	531	6%	63%
	6.98	6.00	34	Speed (L/Ha	24	21	M	313 30-15	17%	89%		381	12%	73% 88-15	XC	486 30-15	9%	70% 90-15	UC	523	7% #4028	64% 80-15
	Flow L/min	Boom BAR	Sprayer S 300L/Ha	400L/Ha	450L/Ha	acing) @ 500L/Ha	Class	VMD	#402 ¹	70-15 <600	Class	80-15 VMD	#402 <141	<600	Class	VMD	<141	<600	Class	30-15 VMD	<141	<600
	4.52	1.75	18	14	12	11	XC	432	9%	78%	UC	574	5%	44%								
00	4.84	2.00	19	15	13	12	XC	416	10%	79%	UC	558	6%	47%	UC	517	7%	66%	UC		3%	47%
80 -15	5.41 5.92	2.50 3.00	22 24	16 18	14 16	13 14	C	390 370	12% 13%	80% 81%	UC	531 509	6% 6%	51% 55%	XC	491 471	8% 9%	69% 71%	UC	616 596	3%	51% 54%
Nozzles	6.40	3.50	26	19	17	15	С	354	14%	82%	UC	491	7%	58%	XC	455	10%	73%	UC	580	4%	57%
	6.84	4.00 4.50	27 29	21 22	18	16 17	C	340 329	15% 16%	83% 84%		475 460	7% 7%	60% 62%		441 429	10% 11%	75% 76%	UC	566 554	4% 4%	59% 61%
	7.25 7.65	5.00	31	23	19 20	18	M	319	17%	84%		448	8%	64%	VC	419	11%	77%	UC	544	5%	62%
	8.02	5.50	32	24	21	19	M	310	18%	85%	XC	436	8%	65%	VC	410	12%	78%	UC	534	5%	63%
	8.38	6.00	Sprayor 5	25 Coood // /Uo	22 on 50om or	20	M	302 30-20	18%	85% 70-20		426 30-20	8%	67% 88-20	C	402 30-20	12%	79% 90-20	UC	526 30-20	5% #4028	64%
	Flow L/min	Boom BAR	400L/Ha	Speed (L/Ha 500L/Ha	600L/Ha		Class		<141	<600			<141	<600				<600			<141	<600
	6.03	1.75	18	14	12	10	UC	481	8%	71%												
80	6.45 7.21	2.00	19 22	15 17	13 14	11 12	XC	464 438	9% 10%	73% 75%		555 527	5% 6%	47% 52%	IIC	537	6%	62%	UC	601	3%	54%
-20	7.90	3.00	24	19	16	14	XC	418	11%	77%	UC	504	6%	56%	UC	512	6%	65%	UC	575	4%	58%
Nozzles	8.53	3.50	26	20	17	15	VC	402	12%	79%	UC	485	7%	59%	UC	492	7%	68%	UC	554	4%	61%
	9.12 9.67	4.00 4.50	27 29	22	18 19	16 17	C	388 376	13% 13%	80% 81%		468 453	7% 7%	61% 63%		476 461	8% 8%	70% 72%	UC	537 522	5% 5%	63% 65%
	10.19	5.00	31	24	20	17	Č	366	14%	82%		440	7%	65%		449	8%	73%	UC	509	5%	67%
	10.69	5.50	32	26	21	18	С	357	15%	83%		428	8%	66%	XC	438	9%	74%	UC	498	5%	68%
	11.17 Flow	6.00 Boom	34 Sprayer	27 Speed (L/Ha	on 50cm sr	19 pacing) @	M ER8	349 30 -25	15% #402	84% 70-25		417 80-25	8% #402	67% 88-25		428 3 0-25	9% #402	75% 90-25	UC DR8	488 30 -25	6% #4028	69% 80-25
	L/min	BAR	500L/Ha	600L/Ha	700L/Ha	800L/Ha	Class	VMD	<141	<600				<600								
	7.54 8.06	1.75 2.00	18 19	15 16	13 14	11 12	XC	483 466	9% 9%	71% 72%	IIC	515	5%	53%								
80	9.01	2.50	22	18	15	14	XC	439	11%	74%			6%	57%	UC	579	4%	58%	UC	630	3%	50%
-25	9.87	3.00	24	20	17	15	XC	418	12%	76%		470	7%	60%	UC	556	5%	61%	UC	605	3%	54%
Nozzles	10.66 11.40	3.50 4.00	26 27	21	18 20	16 17	VC C	401 387	13%	77% 78%	XC	453 438	7% 7%	62% 64%	UC	537 521	5% 5%	63% 65%	UC	585 567	3% 4%	57% 59%
	12.09	4.50	29	24	21	18	С	374	14%	79%	XC	425	8%	66%	UC	508	6%	67%	UC	553	4%	61%
	12.74	5.00	31	25	22	19	C	364	15%	80%	XC	413	8%	67%	UC	496	6%	68%	UC	540	4%	63%
	13.36 13.96	5.50 6.00	32 34	27 28	23 24	20 21	M	355 347	15% 16%	81% 81%		402 393	8% 8%	68% 69%	XC	486 477	6% 6%	69% 70%	UC	528 518	4% 4%	64% 66%
	Flow	Boom		Speed (L/Ha				30-30	#402			80-30		88-30		30-30		90-30		30-30		80-30
	<u>L/min</u> 9.05	BAR 1.75	600L/Ha 18	700L/Ha 16	800L/Ha 14	900L/Ha 12	UC	VMD 504	<141 5%	<600 67%	Class	VMD	<141	<600	Ulass	VIVID	<141	<600	Class	VIVID	<141	<600
	9.67	2.00	19	17	15	13	UC	485	6%	69%		513	5%	53%								
80 -30	10.81 11.84	2.50 3.00	22 24	19 20	16 18	14 16	XC	456 434	7% 8%	71% 73%		485 464	5% 6%	57% 60%	UC	567 546	4% 5%	59% 62%	UC	616 581	2% 3%	52% 56%
Nozzles	12.79	3.50	26	22	19	17	XC	416	8%	75%		447	6%	62%	UC	528	5%	64%	UC	553	3%	60%
	13.68	4.00	27	23	21	18	XC	401	9%	76%		433	6%	64%	UC	514	5%	66%	UC	530	3%	62%
	14.51 15.29	4.50 5.00	29 31	25 26	22	19 20	VC	388 377	10%	77% 78%		421 410	7% 7%	66% 67%	UC	501 490	5% 6%	68% 69%	UC	511 494	3% 4%	65% 67%
	16.04		32	27	24	21	VC	367		79%			7%	69%	UC			71%			4%	
	16.75		34 Sprayor	29	25	22	C	358					7%	70%		471		72%	XC	466	4%	70%
	Flow L/min	Boom BAR	Sprayer : 800L/Ha	Speed (L/Ha 1000L/Ha	on 50cm sp 1250L/Ha			80-40 VMD	#402 <141	70-40 <600				88-40 <600			#402 <141					
	14.42	2.50	22	17	14	12	XC	456	8%	71%	XC	477	5%	59%	UC	536	4%	61%				
80	15.79 17.06	3.00	24 26	19 20	15 16	13 14	XC	434 416	8% 9%	73% 75%		459 444	5% 6%	61% 63%		514 496	5% 5%	64% 66%				
-40	18.24	4.00	27	22	18	15	XC	402	10%	76%		431	6%	65%		481	5%	68%				
Nozzles	19.34		29	23	19	15	XC	389	10%	77%	XC	420	6%	67%	XC	468	6%	69%				
	20.39	5.00	31 32	24 26	20 21	16 17	VC VC	378 369	11%	78% 79%		411	6% 7%	68% 69%		456 446	6% 6%	71% 72%				
	22.33	6.00	34	27	21	18	VC	360	12%	80%			7%	70%		437	6%	73%]			
	Flow L/min	Boom BAR		Speed (L/Ha 1500L/Ha				30-50 VMD	#402 ⁻													
	18.02		22	14	1/30 <u>1</u> /11a	2000L/Tia	XC		7%	70%												
00	19.74		24	16	14	12	XC	440	8%	72%												
80 -50	21.32		26 27	17 18	15 16	13 14	XC	423 408	8% 9%	74% 75%	1											
Nozzles	24.18		29	19	17	15	XC	396	9%	76%	1											
	25.48		31	20	17	15	XC	385	9%	77%												
	26.73 27.92		32 34	21	18 19	16 17	VC VC	376 367	10%	78% 79%												
	Flow	Boom	Sprayer	Speed (L/Ha	on 50cm sp	acing) @	ER8	30-60	#402	70-60												
	L/min 21.62	BAR 2.50	1500L/Ha 17	2000L/Ha	2500L/Ha 10	3000L/Ha	Class XC		<141 8%	<600 69%												
	23.69	3.00	19	14	11	10	XC	436	9%	71%												
80 -60	25.59 27.35	3.50 4.00	20 22	15 16	12 13	10 11	XC	421 408	9%	72% 74%	-											
Nozzles	29.01	4.00	23	17	14	12	XC	397	10%	75%												
	30.58	5.00	24	18	15	12	XC	388	11%	76%												
	32.07 33.50	5.50 6.00	26 27	19 20	15 16	13 13	VC VC	379 372	11% 12%	77% 79%												
	00.00	, 0.00						UIL	/0		-											

COMBO-JET 110° Spray Tips - Standard Sprayer Systems

Comprehensive rate & speed charts for any nozzle spacing/speed/rate is available on Tip Wizard. Try it today!

Disclaimer: These charts are published for comparative purposes to demonstrate the differences in the series of Combo-Jet® spray tips. Data used to populate this chart is extrapolated from third party testing data from a controlled conditions test with water as the testing solution. Actual spray applications with active chemical ingredients may change the spray dynamics and spray tip performance specifications. Wilger is not liable for any misuse or misrepresentation of this information, leading to (but not limited to) incorrect spray application, crop damage, or any other harm.

(Not limited to human, livestock or environmental). Always verify these charts with the most recent charts found on the www.wilger.net, and ALWAYS follow chemical label nozzle requirements.

Fine (F)
Medium (M)
Coarse (C)
Very Coarse (VC)
Extremely Coarse (XC) ASABE Spray Classification (ASABE S572.1 Standard) Spray quality is categorized based on Dv0.1 and VMD droplet sizes.

Objective testing data (by 3rd party), from spray spectrum recording equipment (without wind tunn use), has been used to classify spray quality for this chart. Extra data (e.g. VMD, etc.) can vary between testing equipment and method, and is provided as an educational resource only.

VMD (Volume Median Diameter) The median droplet (in µ) for a sprayed volume. Half of the volume is made of droplets smaller, with half made up of droplets larger.

% <141 μ (% Driftable Fines) Percentage of volume which is likely to drift. As wind & boom height increase, observed spray drift will increase substantially.

% <600 μ (% of Small Droplets) % of volume which is made up of 'small' droplets, useful for coverage As % of useful droplets lowers, overall coverage is reduced.

Nozzle	Flow	Boom		cation Rate				ED 446		/ Classi	fication								%<6					
Size & Angle	Rate L/min	BAR		on 50cm No Sprayer Sp			Class)° Serie	es <600	Clace		° Serie			MR110			Clace)° Serie			Seri VN
ruigio		Boom		Speed (L/Ha				10-01		81-01	Ciass	VIVID	V141	<000	Ulass	VIVID	×141	 <000	Ciass	VIVID	V141	 < 000	Oldoo	V 10
	L/min	BAR	20L/Ha	30L/Ha	40L/Ha	50L/Ha	Class	VMD	<141															
	0.279	1.50 1.75	17 18	11 12	8.4 9.0	6.7 7.2	F	147 143	46%	100%														
110	0.302	2.00	19	13	10	7.7	Ė	140	51%															
-01	0.360	2.50	22	14	11	8.6	F	135	54%	100%														
lozzles	0.395	3.00	24	16	12	9.5	F	131	57%															
	0.426 0.456	3.50 4.00	26 27	17 18	13 14	10 11	F	128 125	60% 62%	100% 100%														
	0.484	4.50	29	19	15	12	F	122	64%															
	0.510		31	20	15	12	F	120	65%															
	0.535 0.558	5.50 6.00	32 34	21 22	16 17	13 13	F	118		100% 100%														
	Flow	Boom		Speed (L/Ha				10-015			SR11	0-015	#4028	37-015	MR1	10-015	#4029	1-015	DR11	0-015	#4028	36-015		
	L/min	BAR	35L/Ha	50L/Ha	60L/Ha	75Ĺ/Ha	Class	VMD	<141	<600				<600						VMD		<600		
	0.419	1.50	14	10	8.4	6.7	F	151		100%														
110	0.452 0.484	1.75 2.00	16 17	11 12	9.0 10	7.2 7.7	F	148 145	44% 46%		F	217	23%	98%	М	327	11%	94%	С	371	7%	91%		
-015	0.541	2.50	19	13	11	8.6	F	141	50%	100%	F	205	27%	98%		291	14%	97%	C	340	9%	93%		
Nozzles	0.592	3.00	20	14	12	9.5	F	137	53%		F	195	30%	98%	M	266	17%	98%	M	318	11%	94%		
	0.640 0.684	3.50 4.00	22 23	15 16	13 14	10 11	F	134 132	55% 58%	100%	F	186 179	32% 34%	98% 98%	M F	245 229	20% 22%	99% 99%	M M	299 284	12% 13%	95% 96%		
	0.725	4.50	25	17	15	12	F	129	60%	100%	F	173	36%	98%	F	215	24%	99%	M	272	15%	96%		
	0.765	5.00	26	18	15	12	F	127	61%	100%	F	167	37%	98%	F	204	26%	99%	M	261	16%	97%		
	0.802	5.50	27	19	16 17	13	F	125	63%		F	162	39%	98% 98%	F	194		100%	M	252	17%	97%		
	0.838 Flow	6.00 Boom	29 Sprayer 9	20 Speed (L/Ha		13 acing) @	F ER1	124 10-02		100% 81-02	SR1	157 10-02	#402			186 10-02		100% 91-02		243 10-02	17% #402	97% 86-02		
	L/min	BAR	40L/Ha	50L/Ha	60L/Ha	70L/Ha	Class	VMD	<141		Class	VMD	<141	<600	Class	VMD		<600	Class	VMD		<600		
		1.50	17	13	11	9.6	F	170	33%															
110	0.603 0.645	1.75 2.00	18 19	14 15	12 13	10 11	F	165 161	36% 39%	100% 100%	F	220	22%	99%	М	320	11%	95%	VC	436	4%	82%		
-02	0.721	2.50	22	17	14	12	F	154	43%			210	25%	99%		291	14%	96%	VC	405	6%	86%		
lozzles	0.790	3.00	24	19	16	14	F	148	46%		F	202	27%	99%		269	17%	97%	C	380	7%	88%		
	0.853 0.912	3.50 4.00	26 27	20 22	17 18	15 16	F	143 139	49% 52%	100% 100%	F	195 189	29% 30%	99% 99%		252 238	19% 21%	98% 98%	C	359 341	8% 9%	90%		
	0.967	4.50	29	23	19	17	Ė	135	54%		F	184	32%	99%	F	227	22%	98%	M	325	10%	92%		
	1.019	5.00	31	24	20	17	F	132	56%	100%	F	179	33%	99%	F	217	24%	98%	M	310	10%	93%		
	1.069	5.50	32	26 27	21 22	18	F	129		100%	F	175	34%	99%	F	208	25%	99%	M	297	11%	94%		
	1.117 Flow	6.00 Boom	34 Sprayer 9	Speed (L/Ha		19 acing) @	_	126 10-025		100% 31-025	SR11	171 0-025	35% #4028	99% 37-025		201 10-025	26% #4029	99% 1-025	M DR11	286 0-025	12% #4028	94% 86-025	UR1	10-0
	L/min	BAR	50L/Ha	60L/Ha	70L/Ha	80L/Ha	Class		<141		Class		<141					<600	Class	VMD		<600		
	0.698	1.50	17	14	12	10	F	192	29%	100%			400/	000/									#402	92-
110	0.754 0.806	1.75 2.00	18 19	15 16	13 14	11 12	F	189 187	29% 29%	100% 100%		244 237	18% 19%	98% 98%	С	354	8%	90%	VC	438	5%	79%		
-025	0.901	2.50	22	18	15	14	F	182	30%			227	22%	98%		330	10%	92%	VC	410	6%	84%	UC	5
Vozzles	0.987	3.00	24	20	17	15	F	179	30%	100%		218	24%	98%	M	311	12%	94%	С	387	7%	87%	UC	52
	1.066 1.140	3.50 4.00	26 27	21 23	18 20	16 17	F	176 174	30% 31%	100%	F	211 204	25% 27%	98% 98%		295 281	14% 15%	95% 96%	C	368 351	8% 9%	90%	UC	50 48
	1.209	4.50	29	24	21	18	F	171	31%			199	28%	98%		268	16%	96%	M	337	9%	92%	XC	46
	1.274	5.00	31	25	22	19	F	169	31%	100%		194	29%	98%	M	257	17%	97%	M	323	10%	93%	XC	44
	1.336	5.50	32	27	23 24	20	F	167		100%	F	189	30%	98%		247	18%		M	311	11%	94%	XC	42
	1.396 Flow	6.00 Boom	34 Sprayer S	28 Speed (L/Ha		21 acing) @	_			100% 81-03		185 10-03	31% #402	98% 87-03		238 10-03		97% 91-03	M DR1	301 10-03	11% #402		VC UR1	4 ⁻
	L/min	BAR	60L/Ha	75L/Ha		120L/Ha																		
	0.838		17	13	10	8.4	F			100%		010	100/	0.407									#402	292
110	0.905 0.967		18 19	14 15	11 12	9.0 10	F			100% 100%		318 306	10% 11%	94% 95%	С	399	6%	86%	VC	484	3%	73%	\vdash	
-03	1.081		22	17	13	11	F			100%		287	14%			371	8%		VC	455	4%	78%	UC	6
lozzles	1.184	3.00	24	19	14	12	F	170	36%	100%	M	272	16%	96%	С	350	9%	91%	VC	432	5%	82%	UC	5
	1.279		26	20	15	13	F			100%		258	17%	97%		331		93%	VC	412	6%	84%		5
	1.368 1.451		27 29	22 23	16 17	14 15	F			100%		247 237	19% 20%	97% 97%		315 301	11%	94% 95%	C	395 380	6% 7%	86% 88%		5: 5:
	1.529		31	24	18	15	F			100%		228	21%	98%		288		96%	C	367	7%	89%		4
	1.604	5.50	32	26	19	16	F	149	43%	100%	F	220	22%	98%	M	276	14%	96%	С	355	8%	90%	XC	4
	_	6.00	34	27	20	17	F			100%				98%				96%		344		91%		

NOTE: 'SR, MR, DR, UR spray tips include pre-orifice(s). Pre-orifices are not interchangeable between different spray tips of different series. 2Shown application information is based on water @ 26.5°C in a controlled environment and should not be considered actual. Information is provided for comparison to other Combo-Jet® spray tips, for educational purposes only. Repeat testing results can vary

COMBO-JET 110° Spray Tips - Standard Sprayer Systems

Disclaimer: These charts are published for comparative purposes to demonstrate the differences in the series of Combo-Jet® spray tips. Data used to populate this chart is extrapolated from third party testing data from a controlled conditions test with water as the testing solution. Actual spray applications with active chemical ingredients may change the spray dynamics and spray tip performance specifications. Wilger is not liable for any misuse or misrepresentation of this information, leading to (but not limited to) incorrect spray application, crop damage, or any other harm. (Not limited to human, livestock or environmental). Always verify these charts with the most recent charts found on the www.wilger.net, and ALWAYS follow chemical label nozzle requirements.

ASABE Spray Classification (ASABE S572.1 Standard)
Spray quality is categorized based on Dv0.1 and VMD droplet sizes.

Objective testing data (by 3rd party), from spray spectrum recording equipment (without wind tunnel use), has been used to classify pray quality for this chart. Extra data (e.g. VMD, etc.) can vary between testing equipment and method, and is provided as an educational resource only.

Fine (F)

Medium (M)
Coarse (C)

Very Coarse (VC)
Extremely Coarse (XC)
vern. Ultra Coarse (UC)

VMD (Volume Median Diameter)
The median droplet (in µ) for a sprayed volume. Half of the volume is made of droplets smaller, with half made up of droplets larger.

% <141μ (% Driftable Fines) Percentage of volume which is likely to drift. As wind & boom height increase, observed spray drift will increase substantially. % <600μ (% of Small Droplets) % of volume which is made up of 'small' droplets, useful for coverage. As % of useful droplets lowers, overall coverage is reduced.

,	_	_			ver 110-06 verified o		ED4	40.04	U 400	24 04	004	10.01	11.400	27.04		10.01	11.400	04 04	DD4	10.04	"400	00.04	UD.	140
	Flow L/min	Boom BAR	Sprayer 8 75L/Ha	5peed (L/Ha 100L/Ha	on 50cm sp 125L/Ha	150L/Ha		10-04 VMD		<600				87-04 <600										110- VN
	1.117	1.50	18	13	123L/11a	8.9	M			100%	Ulass	VIVID	<141	<000	Ulass	VIVID	<141	<000	Ulass	VIVID	<141	<000	#402	
	1.206	1.75	19	14	12	9.6	M	231		100%	М	328	10%	93%									11-10	-0/-
110	1.289	2.00	21	15	12	10	M	227		100%		317	11%		VC	421	5%	84%	XC	514	3%	68%		
-04	1.442	2.50	23	17	14	12	M	218		100%		297	13%	95%	C	390	6%	88%	VC	483	4%	73%	UC	6
Nozzles	1.579	3.00	25	19	15	13	F	211		100%		281	14%	95%	Č	365	7%	90%		458	4%	77%	UC	5
	1.706	3.50	27	20	16	14	F	206		100%		267	16%	96%	Č	344	8%	92%		436	5%	80%	UC	5
	1.824	4.00	29	22	18	15	F	201		100%		256	17%	96%	М	326	9%	94%	VC	417	6%	82%	UC	5
	1.934		31	23	19	15	F	196		100%		245	18%	97%	M	310	10%	94%	С	400	6%	84%	UC	5
	2.039		33	24	20	16	F	192		100%		236	19%	97%	M	296	11%	95%	Č	386	6%	85%	UC	5
	2.138		34	26	21	17	F	189	30%	100%	F	228	20%	97%	М	282	11%	96%	С	372	7%	87%	UC	4
	2.233		36	27	21	18	F	186		100%	F	220	21%	97%	М	271	12%	96%	С	360	7%	87%	UC	4
	Flow	Boom			on 50cm sp			10-05						37-05						10-05	#4028		UR1	
	1.40	BAR 1 50	100L/Ha 17	125L/Ha 13	150L/Ha 11	175L/Ha 9.6	Class	244	<141 19%		Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600	Class #402	
	1.51	1.75	18	14	12	10	M	236	21%	95%	С	375	7%	89%									π-4-02	200
110	1.61	2.00	19	15	13	11	M		22%		C	359	8%		VC	491	3%	71%	XC	533	2%	62%		H
-05	1.80	2.50	22	17	14	12	M	219	25%	95%	M	333	10%		VC	459	4%		XC	512	3%	66%	IIC	6
Nozzles	1.97	3.00	24	19	16	14	F	210	27%	95%	M	312	12%		VC	432	5%	80%		495	3%	69%	UC	6
INOLLIOO	2.13	3.50	26	20	17	15	F	202	28%	95%	M	294	13%		VC	410	6%	82%		481	3%	72%	UC	5
	2.28	4.00	27	22	18	16	Ė	196		95%	M	279	14%	96%	C	391	6%	84%	VC	469	3%	74%	UC	5
	2.42	4.50	29	23	19	17	F	190	31%		M	265	16%	96%	C	374	7%	86%	VC	457	4%	75%	UC	5
	2.55	5.00	31	24	20	17	F	185	32%	95%	M	253	17%	97%	C	359	7%	87%	VC	448	4%	77%	UC	5
	2.67	5.50	32	26	21	18	Ė	180	33%	95%	M	242	17%	97%	Č	345	8%	88%	VC	439	4%	78%	UC	5
	2.79	6.00	34	27	22	19	F	176		95%	F	232	18%	97%	М	332	8%	89%	VC	431	4%	79%	UC	Ē
	Flow	Boom			on 50cm sp		FR1	10-06		81-06	_			37-06							#4028		UR1	
	L/min	BAR	125L/Ha	150L/Ha			Class		<141		Class			<600							<141			
	1.68	1.50	16	13	11	10	С		15%	94%	Oidoo		~	1000	Oldoo		~	1000	Oidoo	******		1000	#402	
	1.81	1.75	17	14	12	11	М	270	16%		VC	442	5%	80%										
110	1.93	2.00	19	15	13	12	M	263	17%	94%	VC	421	6%	83%	XC	511	3%	67%	XC	569	2%	56%		
-06	2.16	2.50	21	17	15	13	M	251	19%	94%	С	386	8%		VC	485	4%	72%	XC	541	2%	62%	UC	6
Nozzles	2.37	3.00	23	19	16	14	M	242	21%	95%	C	358	9%		VC	464	4%	76%	XC	518	3%	65%	UC	6
	2.56	3.50	25	20	18	15	M		22%		М	334	10%		VC	447	4%	78%		499	3%	68%	UC	6
	2.74	4.00	26	22	19	16	M	227	24%	95%	M	314	12%		VC	431	5%	80%	VC	482	3%	71%	UC	5
	2.90	4.50	28	23	20	17	F	221	25%	95%	M	295	13%		VC	418	5%	82%	VC	468	3%	72%	UC	- 5
	3.06	5.00	29	24	21	18	F	216	26%	95%	M	279	14%		VC	405	5%	84%	VC	454	4%	74%	UC	- 5
	3.21	5.50	31	26	22	19	F	211	27%		M	264	14%	95%	C	394	6%	85%	VC	442	4%	75%	UC	5
	3.35	6.00	32	27	23	20	F	206		95%	M	251	15%	96%	Č	384	6%	86%	VC	432	4%	77%	UC	5
	Flow	Boom			on 50cm sp		_	10-08		81-08				37-08						10-08			UR1	
	L/min	BAR	150L/Ha	200L/Ha	250L/Ha	300L/Ha		VMD		<600				<600										
	2.23	1.50	18	13	11	8.9	С	319	15%		Oidoo	VIVID	×111	1000	Oidoo	VIVID	×111	1000	Oidoo	VIVID	```	1000	#402	
	2.41	1.75	19	14	12	9.6	C	305	16%		VC	478	5%	61%										
110	2.58	2.00	21	15	12	10	C	293	17%	93%	VC	458	6%	66%	XC	537	4%	52%	XC	620	3%	40%		
-08	2.88	2.50	23	17	14	12	М	273	19%	94%	VC	423	7%		VC	499	5%	58%	XC	585	3%	45%	UC	6
Nozzles	3.16	3.00	25	19	15	13	M			95%	С	396	8%		VC	470	5%	63%	XC	556	4%	49%	UC	6
	3.41	3.50	27	20	16	14	M	243	22%	95%	Č	372	9%		VC	444	6%	67%	XC	532	4%	52%	UC	6
	3.65	4.00	29	22	18	15	M	231	23%	96%	C	351	10%		VC	422	6%			511	4%	54%	UC	- 5
	3.87	4.50	31	23	19	15	F	220	24%	96%	М	333	10%	83%	С	402	7%	72%	VC	493	5%	56%	UC	5
	4.08	5.00	33	24	20	16	F	211	25%	97%	М	317	11%	85%	С	385	7%	74%	VC	476	5%	58%	UC	5
	4.28	5.50	34	26	21	17	F	202		97%	М	302	11%	86%	С	369	8%	76%	VC	461	5%	60%	UC	5
	4.47	6.00	36	27	21	18	F	194		97%	М	289	12%	87%	С	355	8%	77%	VC	448	5%	61%	UC	5
	Flow	Boom	Sprayer S	Speed (L/Ha	on 50cm sp	acing) @	ER1	10-10	#4028	81-10	SR1	10-10	#402	87-10	MR1	10-10	#402	91-10	DR1	10-10	#4028	86-10	UR1	110
	L/min	BAR	200L/Ha	250L/Ha	300L/Ha	350L/Ha	Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600	Class	V
	2.79	1.50	17	13	11	9.6	С	354	11%														#402	292
	3.02	1.75	18	14	12	10	С	340	12%	89%	VC	497	5%	57%										
110	3.22	2.00	19	15	13	11	С	328	14%	90%	VC	476	6%	61%	XC	529	4%	52%	XC	612	5%	59%		
-10	3.60	2.50	22	17	14	12	С	307		91%	VC	439	7%		VC	493	5%		XC	593	5%			
Nozzles	3.95	3.00	24	19	16	14	С	290	17%	92%			8%	72%	••	464	5%	61%	XC	577	5%	53%	_	6
	4.26	3.50	26	20	17	15	M	276		93%	С	385	9%	76%		439	6%	64%	XC	564	6%		UC	6
	4.56	4.00	27	22	18	16	M	264		93%	С	363	9%	78%	VC	418	6%	67%	XC	553	6%	49%	UC	Ę
	4.84	4.50	29	23	19	17	M	253	21%	94%	С	344	10%	80%	С	400	6%	69%	XC	543	6%	47%	UC	
	5.10	5.00	31	24	20	17	M	243		94%	M	327	10%	82%		383	7%			534	6%			5
	5.35	5.50	32	26	21	18	F	234		94%	М	312	11%	83%	С	368	7%	72%	XC	526	6%	43%	UC	5
	5.58	6.00	34	27	22	19	F		24%		М	298		84%		354		73%				42%	UC	5
	Flow	Boom			on 50cm sp									7-125										
	L/min	BAR	250L/Ha			400L/Ha			<141		Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600		
	3.77		18	15	13	11		413		71%														
	4.03	2.00	19	16	14	12	XC			74%			4%	57%										
110	4.51	2.50	22	18	15	14	XC			76%	VC	476	5%	61%	XC	623	4%	38%	XC	651	3%			
-125	4.94	3.00	24	20	17	15	VC	366	11%	79%	VC	439	6%	67%	XC	587	4%	44%	XC	626	4%	37%		
Nozzles	5.33	3.50	26	21	18	16	С	349		81%	VC	409	6%		XC	558	5%			607	4%	40%		
	5.70	4.00	27	23	20	17	С	335		83%	С	383	7%			533	5%	52%	XC		4%	42%		
	6.04	4.50	29	24	21	18	С	323		84%	С	361	7%	77%			5%	55%			5%			
		- 00	31	25	22	19	С	312		86%		341	8%	79%	VC	492	5%	57%	XC		5%			
	6.37	5.00																						
		5.50	32	27	23	20	С	302	14% 14%	86%	M	323	8%	81%	VC	475	6%	59%	XC	551	5%	47%		

COMBO-JET 110° Spray Tips - Standard Sprayer Systems

Comprehensive rate & speed charts for any nozzle spacing/speed/rate is available on Tip Wizard. Try it today!

Disclaimer: These charts are published for comparative purposes to demonstrate the differences in the series of Combo-Jet® spray tips. Data used to populate this chart is extrapolated from third party testing data from a controlled conditions test with water as the testing solution. Actual spray applications with active chemical ingredients may change the spray dynamics and spray tip performance specifications. Wilger is not liable for any misuse or misrepresentation of this information, leading to (but not limited to) incorrect spray application, crop damage, or any other harm. (Not limited to human, livestock or environmental). Always verify these charts with the most recent charts found on the www.wilger.net, and ALWAYS follow chemical label nozzle requirements.

IOIIOW CI																						
	Flow	Boom	Sprayer S	Speed (L/Ha	on 50cm sp	acing) @	ER1	10-15	#4028	31-15	SR1	10-15	#4028	37-15	MR1	10-15	#4029	91-15	DR1	10-15	#4028	36-15
	L/min	BAR	300L/Ha	400L/Ha	450L/Ha	500L/Ha	Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600
	4.52	1.75	18	14	12	11	XC	414	10%	69%												
	4.84	2.00	19	15	13	12	XC	401	10%	71%	XC	543	5%	50%								
110	5.41	2.50	22	16	14	13	XC	379	11%	74%	XC	510	5%	56%	XC	586	4%	44%	XC	636	4%	44%
-15	5.92	3.00	24	18	16	14	VC	361	12%	77%	VC	483	6%	60%		564	5%	47%	XC	614	4%	47%
Nozzles	6.40	3.50	26	19	17	15	С	346	13%	79%	VC	460	6%	64%		546	5%	49%	XC	595	4%	50%
	6.84	4.00	27	21	18	16	С	333	14%	80%	VC	441	7%	67%	XC	530	5%	51%	XC	579	4%	52%
	7.25	4.50	29	22	19	17	С	322	14%	82%	VC	423	7%	69%		517	5%	53%	XC	565	4%	54%
	7.65	5.00	31	23	20	18	С	311	15%	83%	VC	407	7%	71%	XC	504	5%	54%	XC	552	4%	56%
	8.02	5.50	32	24	21	19	С	302	15%	84%	С	393	8%	72%	VC	493	5%	56%	XC	540	5%	57%
	8.38	6.00	34	25	22	20	С	294			С	380	8%	74%	VC	483	5%	57%	XC	530	5%	59%
	Flow	Boom	Sprayer S	Speed (L/Ha	on 50cm sp	acing) @	ER1	10-20	#402	31-20	SR1	10-20	#4028		MR1	10-20	#4029	91-20				
	L/min	BAR	400L/Ha	500L/Ha	600L/Ha	700L/Ha	Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600				
	6.03	1.75	18	14	12	10	XC	471	7%	61%												
	6.45	2.00	19	15	13	11	XC	457	8%	63%	XC	522	6%	54%								
110	7.21	2.50	22	17	14	12	XC	433	8%	67%	VC	492	6%	60%	XC	569	5%	46%				
-20	7.90	3.00	24	19	16	14	XC	413	9%	70%	VC	467	7%	64%		547	5%	49%				
Nozzles	8.53	3.50	26	20	17	15	XC	397	9%	72%	VC	446	7%	67%		527	6%	52%				
	9.12	4.00	27	22	18	16	XC	383	10%	74%	VC	428	8%	70%		511	6%	54%				
	9.67	4.50	29	23	19	17	VC	370	10%	75%	VC	412	8%	72%		496	6%	56%				
	10.19		31	24	20	17	VC	359	10%	76%	С	398	8%	74%		483	6%	57%				
	10.69		32	26	21	18	C	348	11%	78%	Č	385	8%	75%		471	7%	59%				
	11.17	6.00	34	27	22	19	С	339	11%	79%		373	9%	77%		460	7%	60%				
	Flow	Boom	Sprayer S	Speed (L/Ha	on 50cm sp	acing) @	ER1	10-25	#402	31-25	SR1	10-25	#4028	37-25								
	L/min	BAR	500L/Ha	600L/Ha	700L/Ha	800L/Ha					Class	VMD	<141	<600								
	7.54	1.75	18	15	13	11	XC	470	7%	61%												
	8.06	2.00	19	16	14	12	XC	456	7%	64%												
110	9.01	2.50	22	18	15	14	XC	433	7%	69%	VC	480	6%	60%								
-25	9.87	3.00	24	20	17	15	XC	414	8%	72%	VC	458	7%	64%								
Nozzles	10.66	3.50	26	21	18	16	XC	397	8%	75%	VC	439	7%	66%								
	11.40	4.00	27	23	20	17	XC	383	8%	77%	VC	423	8%	68%								
	12.09	4.50	29	24	21	18	VC	371	8%	78%	VC	408	8%	70%								
	1071												0 /0									
	12.74	5.00	31	25	22	19	VC	360	8%	80%	С	396	8%	72%								
	13.36	5.50	32	27	23	20	С	360 350	8% 8%	80% 81%	C C	396 384	8% 8%	72% 73%								
	13.36 13.96	5.50 6.00	32 34	27 28	23 24	20 21	C C	360 350 341	8% 8% 9%	80% 81% 82%	С	396	8%	72%								
	13.36 13.96 Flow	5.50 6.00 Boom	32 34 Sprayer S	27 28 Speed (L/Ha	23 24 on 50cm sp	20 21 acing) @	C C ER1	360 350 341 10-30	8% 8% 9% #402	80% 81% 82% 81-30	C C	396 384	8% 8%	72% 73%								
	13.36 13.96 Flow L/min	5.50 6.00 Boom BAR	32 34 Sprayer S 600L/Ha	27 28 Speed (L/Ha 700L/Ha	23 24 on 50cm sp 800L/Ha	20 21 acing) @ 900L/Ha	C C ER1 Class	360 350 341 10-30 VMD	8% 9% #402 <141	80% 81% 82% 81-30 <600	C C	396 384	8% 8%	72% 73%								
	13.36 13.96 Flow L/min 9.05	5.50 6.00 Boom BAR 1.75	32 34 Sprayer 9 600L/Ha 18	27 28 Speed (L/Ha 700L/Ha 16	23 24 on 50cm sp 800L/Ha 14	20 21 pacing) @ 900L/Ha 12	C C ER1 Class UC	360 350 341 10-30 VMD 483	8% 8% 9% #4028 <141 6%	80% 81% 82% 81-30 <600 59%	C C	396 384	8% 8%	72% 73%								
	13.36 13.96 Flow L/min 9.05 9.67	5.50 6.00 Boom BAR 1.75 2.00	32 34 Sprayer 5 600L/Ha 18 19	27 28 Speed (L/Ha 700L/Ha 16 17	23 24 on 50cm sp 800L/Ha 14 15	20 21 vacing) @ 900L/Ha 12 13	C C ER1 Class UC XC	360 350 341 10-30 VMD 483 469	8% 9% #402 <141 6% 6%	80% 81% 82% 81-30 <600 59% 61%	C C	396 384	8% 8%	72% 73%								
110	13.36 13.96 Flow L/min 9.05 9.67 10.81	5.50 6.00 Boom BAR 1.75 2.00 2.50	32 34 Sprayer 5 600L/Ha 18 19 22	27 28 Speed (L/Ha 700L/Ha 16 17	23 24 on 50cm sp 800L/Ha 14 15 16	20 21 vacing) @ 900L/Ha 12 13	C C ER1 Class UC XC XC	360 350 341 10-30 VMD 483 469 447	8% 9% #402 <141 6% 6% 7%	80% 81% 82% 81-30 <600 59% 61% 64%	C C	396 384	8% 8%	72% 73%								
-30	13.36 13.96 Flow L/min 9.05 9.67 10.81 11.84	5.50 6.00 Boom BAR 1.75 2.00 2.50 3.00	32 34 Sprayer 5 600L/Ha 18 19 22 24	27 28 Speed (L/Ha 700L/Ha 16 17 19 20	23 24 on 50cm sp 800L/Ha 14 15 16 18	20 21 vacing) @ 900L/Ha 12 13 14	C C ER1 Class UC XC XC	360 350 341 10-30 VMD 483 469 447 429	8% 9% #402 <141 6% 6% 7% 7%	80% 81% 82% 81-30 <600 59% 61% 64% 66%	C C	396 384	8% 8%	72% 73%								
	13.36 13.96 Flow L/min 9.05 9.67 10.81 11.84 12.79	5.50 6.00 Boom BAR 1.75 2.00 2.50 3.00 3.50	32 34 Sprayer 600L/Ha 18 19 22 24 26	27 28 Speed (L/Ha 700L/Ha 16 17 19 20	23 24 on 50cm sp 800L/Ha 14 15 16 18	20 21 vacing) @ 900L/Ha 12 13 14 16	C C C C C C C C C C C C C C C C C C C	360 350 341 10-30 VMD 483 469 447 429 413	8% 9% #402 <141 6% 6% 7% 7% 8%	80% 81% 82% 81-30 <600 59% 61% 64% 66% 68%	C C	396 384	8% 8%	72% 73%								
-30	13.36 13.96 Flow L/min 9.05 9.67 10.81 11.84 12.79 13.68	5.50 6.00 Boom BAR 1.75 2.00 2.50 3.00 3.50 4.00	32 34 Sprayer 600L/Ha 18 19 22 24 26 27	27 28 Speed (L/Ha 700L/Ha 16 17 19 20 22 23	23 24 on 50cm sp 800L/Ha 14 15 16 18 19	20 21 Pacing) @ 900L/Ha 12 13 14 16 17	C C C ER1 Class UC XC XC XC XC XC	360 350 341 10-30 VMD 483 469 447 429 413 400	8% 9% #402 <141 6% 6% 7% 7% 8% 8%	80% 81% 82% 81-30 <600 59% 61% 64% 66% 68% 70%	C C	396 384	8% 8%	72% 73%								
-30	13.36 13.96 Flow L/min 9.05 9.67 10.81 11.84 12.79 13.68 14.51	5.50 6.00 Boom BAR 1.75 2.00 2.50 3.00 3.50 4.00 4.50	32 34 Sprayer 600L/Ha 18 19 22 24 26 27 29	27 28 Speed (L/Ha 700L/Ha 16 17 19 20 22 23 25	23 24 on 50cm sp 800L/Ha 14 15 16 18 19 21	20 21 Pacing) @ 900L/Ha 12 13 14 16 17 18	C C C C C C C C C C C C C C C C C C C	360 350 341 10-30 VMD 483 469 447 429 413 400 388	8% 8% 9% #402 <141 6% 6% 7% 7% 8% 8%	80% 81% 82% 81-30 <600 59% 61% 64% 66% 68% 70% 71%	C C	396 384	8% 8%	72% 73%								
-30	13.36 13.96 Flow L/min 9.05 9.67 10.81 11.84 12.79 13.68 14.51 15.29	5.50 6.00 Boom BAR 1.75 2.00 2.50 3.00 3.50 4.00 4.50 5.00	32 34 Sprayer 600L/Ha 18 19 22 24 26 27 29 31	27 28 Speed (L/Ha 700L/Ha 16 17 19 20 22 23 25 26	23 24 on 50cm sp 800L/Ha 14 15 16 18 19 21 22 23	20 21 vacing) @ 900L/Ha 12 13 14 16 17 18 19	C C C C C C C C C C C C C C C C C C C	360 350 341 10-30 VMD 483 469 447 429 413 400 388 377	8% 8% 9% #402 <141 6% 6% 7% 7% 8% 8% 9%	80% 81% 82% 81-30 <600 59% 61% 64% 66% 68% 70% 71%	C C	396 384	8% 8%	72% 73%								
-30	13.36 13.96 Flow L/min 9.05 9.67 10.81 11.84 12.79 13.68 14.51	5.50 6.00 Boom BAR 1.75 2.00 2.50 3.50 4.00 4.50 5.00	32 34 Sprayer 600L/Ha 18 19 22 24 26 27 29	27 28 Speed (L/Ha 700L/Ha 16 17 19 20 22 23 25	23 24 on 50cm sp 800L/Ha 14 15 16 18 19 21	20 21 Pacing) @ 900L/Ha 12 13 14 16 17 18	C C C C C C C C C C C C C C C C C C C	360 350 341 10-30 VMD 483 469 447 429 413 400 388 377 368	8% 8% 9% #402 <141 6% 6% 7% 7% 8% 8%	80% 81% 82% 81-30 <600 59% 61% 66% 66% 70% 71% 72% 73%	C C	396 384	8% 8%	72% 73%								

LERAP Drift Reduction Star Rating for COMBO-JET 110° Spray Nozzles [For UK applicators]

Local Environmental Risk Assessments for Pesticides (LERAP) certification is completed in the UK to provide applications a means to qualify a local drift reduction assessment based on the nozzles used for an application. Stay tuned for further LERAP nozzle testing for more nozzles.

| Nozzle | Pressure Range | Pressure Ran

The 4-star LERAP rating is a new rating that illustrates the highest classification for drift reduction within the standard certification. (List updated January 2021)

	LENAP NATING	INUZZIE	riessure narige
1		DR110-025	1.0 - 2.5 BAR
1		DR110-03	1.6 - 3.0 BAR
1		DR110-04	1.0 - 5.0 BAR
1	***	DR110-05	1.6 - 5.0 BAR
1	75%	DR110-06	3.1 - 5.0 BAR
1	Drift Reduction	MR110-04	1.0 - 2.5 BAR
_	Dint neudonon	MR110-05	1.6 - 5.0 BAR
		MR110-06	1.6 - 5.0 BAR
		SR110-05	1.0 - 1.5 BAR

LERAP RATING	Nozzle	Pressure Range
	DR110-025	2.6 - 3.5 BAR
**	DR110-03	3.1 - 5.0 BAR
50%	MR110-04	2.6 - 3.5 BAR
Drift Reduction	SR110-05	1.6 - 3.0 BAR
	•	

Drift Reduction SR110-05 1.6 - 3.0 BAR

More information on LERAP certification, process, and the most up to date listing of approved nozzles and

heter information in Ethic termination, process, and the missing up to date issuing or approved interesting the Health and Safety Executive (HSE), also available online @ https://secure.pesticides.gov.uk/SprayEquipment

For the updated list on COMBO-JET

nozzles, visit www.wilger.net/LERAP

COMBO-JET 80° Spray Tips - PWM Spray Systems

Comprehensive rate & speed charts for any nozzle spacing/speed/rate is available on Tip Wizard. Try it today!

Disclaimer: These charts are published for comparative purposes to demonstrate the differences in the series of Combo-Jet® spray tips. Data used to populate this chart is extrapolated from third party testing data from a controlled conditions test with water as the testing solution. Actual spray applications with active chemical ingredients may change the spray dynamics and spray tip performance specifications. Wilger is not liable for any misuse or misrepresentation of this information, leading to (but not limited to) incorrect spray application, crop damage, or any other harm. (Not limited to human, livestock or environmental). Always verify these charts with the most recent charts found on the www.wilger.net, and ALWAYS follow chemical label nozzle requirements.

ASABE Spray Classification (ASABE S572.1 Standard)
Spray quality is categorized based on Dv0.1 and VMD droplet sizes.

Objective testing data (by, 3rd party), from spray spectrum recording equipment (without wind tunnel use), has been used to classify spray quality for this chart. Extra data (e, g. VMD, etc) can vary between testing equipment and method, and is provided as an educational resource only.

Tips sized up to 110:06 verified on Phase Doppler Particle Analyzer (PDPA); tips sized over 110:06 verified on Malwern.

Fine (F) Medium (M) Coarse (C)
Very Coarse (VC)
Extremely Coarse (XC)
Ultra Coarse (UC)

VMD (Volume Median Diameter) The median droplet (in μ) for a sprayed volume. Half of the volume is made of droplets smaller, with half made up of droplets larger.

% <141µ (% Driftable Fines) Percentage of volume which is likely to drift. As wind & boom height increase, observed spray drift will increase substantially.

% <600µ (% of Small Droplets) % of volume which is made up of 'small' droplets, useful for coverage. As % of useful droplets lowers

Duty Cycle (Effective 'on time' of solenoid)

The duty cycle is the effective on time of a PWM solenoid. Generally speed ranges are based on a 25% - 100% duty cycle. When selecting a nozzle, often a duty cycle of 60-80% is recommended at typical speeds, providing flexibility for upper speed & turning situations, as well as slower spraying speeds. It is not advised to spray below 40% duty cycle

Calculating Duty Cycle on Printed Charts (Useful for nozzle sizing & selection) On Wilger printed charts, typically a SPEED RANGE is provided, but the duty cycle % is a dynamic factor based on the sprayers travel speed. To calculate a duty cycle at a given travel speed, divide CURRENT sprayer speed into max nozzle speed. (e.g. 15mph / 20mph max = 75% duty cycle)

	_	ì							_	0 .	·		. /5			0/ 1	44 (5)	161.0()	0/ 00	0 (0			
Nozzle	Flow	Boom	Tip		lication Rate on 50cm No:		tare					ı; VMI				<u>%<1</u>		<u>rift %);</u> ° Serie		l0μ (S	Small D	roplets ° Serie	
Size & Angle	Rate L/min	BAR	BAR		@ Sprayer Sp			Class	VMD	Serie		Class		Series		Class				Class			
741910		Boom	Tip		Speed (L/Ha				0-005														
	L/min	BAR	BAR	20L/Ha	30L/Ha	40L/Ha															VMD		
	0.140		1.50	2.1-8.4	1.4-5.6	1.1-4.2	0.9-3.4	F	163		100%												
	0.151	1.75	1.75	2.3-9	1.5-6	1.1-4.5	0.9-3.6	F	156	41%	100%												
80	0.161	2.00	2.00	2.4-9.7	1.6-6.4	1.2-4.8	1-3.9	F	150	45%	100%					M	240		100%		282		100%
-005	0.180	2.50	2.50	2.8-11	1.8-7.2	1.4-5.4	1.1-4.3	F	141	52%	100%					F	212	23%	100%		245	17%	
Nozzles	0.197 0.213	3.00 3.50	3.00	3-12 3.3-13	2-7.9 2.1-8.5	1.5-5.9 1.6-6.4	1.2-4.7 1.3-5.1	F	133 127	58% 63%	100% 100%					F	192 177		100% 100%		218 198	26%	1009
	0.228	4.00	4.00	3.5-14	2.3-9.1	1.7-6.8	1.4-5.5	F	122	67%	100%					Ė	164		100%		181		100%
	0.242	4.50	4.50	3.8-15	2.4-9.7	1.8-7.3	1.5-5.8	F	118	71%	100%					Ė	154		100%		168	33%	
	0.255	5.00	5.00	3.8-15	2.5-10	1.9-7.6	1.5-6.1	F	115	74%	100%					F	145	45%	100%	F	157	36%	100%
	0.267	5.50	5.50	4-16	2.8-11	2-8	1.6-6.4	F	112	77%	100%					F	138		100%		148		
	0.279	6.00	6.00	4.3-17	2.8-11	2.1-8.4	1.7-6.7	F	109	80%	100%					F	131		100%		140	41%	
	Flow	Boom	Tip		Speed (L/Ha				0-0067					#40288			0-0067		0-0067			#4028	
	L/min 0.187	1.50	1.50	20L/Ha 2.8-11	30L/Ha 1.9-7.5	40L/Ha 1.4-5.6	50L/Ha 1.1-4.5	Class	193	<141 24%	<600 100%	Class	VIVID	<141	<000	Class	VMD	<141	<600	Class	VIVID	<141	<000
	0.107	1.75	1.75	3-12	2-8.1	1.5-6.1	1.1-4.3	F	182	29%	100%												_
80	0.216	2.00	2.00	3.3-13	2.2-8.6	1.6-6.5	1.3-5.2	F	173	34%	100%					F	214	23%	100%	С	313	8%	100%
-0067	0.241		2.50	3.5-14	2.4-9.7	1.8-7.2	1.5-5.8	F	159	41%	100%					F	191		100%		280		100%
Nozzles	0.265	3.00	3.00	4-16	2.8-11	2-7.9	1.6-6.3	F	148	47%	100%					F	174	36%	100%	M	256	15%	100%
	0.286	3.50	3.50	4.3-17	2.8-11	2.2-8.6	1.7-6.9	F	140	53%	100%					F	161		100%		237		100%
	0.305	4.00	4.00	4.5-18	3-12	2.3-9.2	1.8-7.3	Ę	133	57%	100%					F	150				222	19%	
	0.324		4.50	4.8-19	3.3-13	2.4-9.7	2-7.8	F	127	61%	100%					F	141		100%		209		100%
	0.341	5.00 5.50	5.00	5-20 5.3-21	3.5-14 3.5-14	2.5-10 2.8-11	2.1-8.2 2.2-8.6	F	122 118	64% 68%	100% 100%					F	134 127		100%		199 190	23%	1009
	0.374	6.00	6.00	5.5-22	3.8-15	2.8-11	2.3-9	Ė	114	71%	100%					Ė	122		100%		182	26%	
	Flow	Boom	Tip		Speed (L/Ha			ER	30-01		70-01	SR8	0-01	#4028	38-01	MR8	30-01	#402			80-01		80-01
	L/min	BAR	BAR	20L/Ha	30L/Ha	40L/Ha	50L/Ha	Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600
	0.279		1.49	4.3-17	2.8-11	2.1-8.4	1.7-6.7	F	171	31%	100%												
	0.301	1.75	1.74	4.5-18	3-12	2.3-9	1.8-7.2	F	164	36%	100%			400/	070/								_
80	0.322	2.00	1.99	4.8-19	3.3-13	2.4-9.7	1.9-7.7	는	158	40%	100%	M	238	19%	97%	_	001	070/	070/	0	007	100/	050/
-01 Nozzles	0.360	2.50 3.00	2.49	5.5-22 6-24	3.5-14 4-16	2.8-11 3-12	2.2-8.6 2.4-9.5	-	148 140	46% 52%	100% 100%	-	210 190	26% 32%	97% 97%	Ė	201 184	27% 32%	97% 97%	C M	287 265	12% 15%	
INUZZICS	0.334	3.50	3.49	6.5-26	4.3-17	3.3-13	2.5-10	Ė	134	56%	100%	F	174	36%	98%	F	172	36%	97%	M	247	17%	
	0.455		3.98	6.8-27	4.5-18	3.5-14	2.8-11	Ė	129	60%	100%	F	162	40%	98%	Ė	162	39%	97%	M	233	19%	
	0.483	4.50	4.48	7.3-29	4.8-19	3.5-14	3-12	F	125	64%	100%	F	152	44%	98%	F	153	42%	97%	M	221	20%	
	0.509		4.98	7.8-31	5-20	3.8-15	3-12	F	121	67%	100%		143	47%	98%	F	146	45%	97%	F	211	22%	
	0.534			8-32	5.3-21	4-16	3.3-13	F	118	70%	100%		136	50%	98%	F	140	48%	97%	F	202	23%	
	0.557		5.98	8.3-33	5.5-22	4.3-17	3.3-13	F	115	73%	100%	F	129	52%	98%	F	134	50%	96%		195	24%	
	Flow L/min	Boom	Tip						0 01 5		0.045	ODO						11.4000	00.04.5	DDO	0 04 5		
						on 50cm spa				#4027											0-015		
	0.417	BAR 1.50	BAR	35L/Ha	50L/Ha	60L/Ha	75L/Ha	Class	VMD	#4027 <141	<600			#4028 <141								#4028 <141	
	0.417 0.450	1.50 1.75					75L/Ha 1.7-6.7			#4027	<600 100%												
80		1.50	BAR 1.49	35L/Ha 3.5-14	50L/Ha 2.5-10	60L/Ha 2.1-8.3	75L/Ha	Class	VMD 195	#4027 <141 22%	<600	Class											
-015	0.450 0.481 0.538	1.50 1.75 2.00 2.50	1.49 1.73 1.98 2.48	35L/Ha 3.5-14 3.8-15 4.3-17 4.5-18	50L/Ha 2.5-10 2.8-11 3-12 3.3-13	60L/Ha 2.1-8.3 2.3-9 2.4-9.6 2.8-11	75L/Ha 1.7-6.7 1.8-7.2 1.9-7.7 2.2-8.6	Class	195 188 182 172	#4027 <141 22% 25% 28% 32%	<600 100% 100% 100% 100%	Class M M	268 241	15% 20%	<600 95% 96%	Class C C	329 298	<141 10% 13%	94% 96%	VC VC	424 394	<141 4% 5%	<600 86% 89%
	0.450 0.481 0.538 0.590	1.50 1.75 2.00 2.50 3.00	1.49 1.73 1.98 2.48 2.97	35L/Ha 3.5-14 3.8-15 4.3-17 4.5-18 5-20	50L/Ha 2.5-10 2.8-11 3-12 3.3-13 3.5-14	60L/Ha 2.1-8.3 2.3-9 2.4-9.6 2.8-11 3-12	75L/Ha 1.7-6.7 1.8-7.2 1.9-7.7 2.2-8.6 2.4-9.4	Class	195 188 182 172 164	#4027 <141 22% 25% 28% 32% 36%	<600 100% 100% 100% 100% 100%	M M M	268 241 222	15% 20% 23%	95% 96% 96%	Class C C	329 298 274	10% 13% 15%	94% 96% 97%	VC VC C	424 394 371	4% 5% 6%	86% 89% 91%
-015	0.450 0.481 0.538 0.590 0.637	1.50 1.75 2.00 2.50 3.00 3.50	1.49 1.73 1.98 2.48 2.97 3.47	35L/Ha 3.5-14 3.8-15 4.3-17 4.5-18 5-20 5.5-22	50L/Ha 2.5-10 2.8-11 3-12 3.3-13 3.5-14 3.8-15	60L/Ha 2.1-8.3 2.3-9 2.4-9.6 2.8-11 3-12 3.3-13	75L/Ha 1.7-6.7 1.8-7.2 1.9-7.7 2.2-8.6 2.4-9.4 2.5-10	Class	VMD 195 188 182 172 164 158	#4027 <141 22% 25% 28% 32% 36% 39%	<600 100% 100% 100% 100% 100% 100%	M M M F	268 241 222 207	15% 20% 23% 26%	95% 96% 96% 97%	Class C C C	329 298 274 255	10% 13% 15% 17%	94% 96% 97% 97%	VC VC C C	424 394 371 352	4% 5% 6% 7%	86% 89% 91% 92%
-015	0.450 0.481 0.538 0.590 0.637 0.681	1.50 1.75 2.00 2.50 3.00 3.50 4.00	1.49 1.73 1.98 2.48 2.97 3.47 3.96	35L/Ha 3.5-14 3.8-15 4.3-17 4.5-18 5-20 5.5-22 5.8-23	50L/Ha 2.5-10 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16	60L/Ha 2.1-8.3 2.3-9 2.4-9.6 2.8-11 3-12 3.3-13 3.5-14	75L/Ha 1.7-6.7 1.8-7.2 1.9-7.7 2.2-8.6 2.4-9.4 2.5-10 2.8-11	Class	VMD 195 188 182 172 164 158 152	#4027 <141 22% 25% 28% 32% 36% 39% 42%	<600 100% 100% 100% 100% 100% 100%	M M M F	268 241 222 207 194	15% 20% 23% 26% 29%	95% 96% 96% 97% 97%	Class C C C M M	329 298 274 255 240	10% 13% 15% 17% 19%	94% 96% 97% 97% 98%	VC VC C C	424 394 371 352 337	4% 5% 6% 7% 8%	86% 89% 91% 92% 93%
-015	0.450 0.481 0.538 0.590 0.637 0.681 0.722	1.50 1.75 2.00 2.50 3.00 3.50 4.00 4.50	1.49 1.73 1.98 2.48 2.97 3.47 3.96 4.46	35L/Ha 3.5-14 3.8-15 4.3-17 4.5-18 5-20 5.5-22 5.8-23 6.3-25	50L/Ha 2.5-10 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17	60L/Ha 2.1-8.3 2.3-9 2.4-9.6 2.8-11 3-12 3.3-13 3.5-14	75L/Ha 1.7-6.7 1.8-7.2 1.9-7.7 2.2-8.6 2.4-9.4 2.5-10 2.8-11 3-12	Class	VMD 195 188 182 172 164 158 152 148	#4027 <141 22% 25% 28% 32% 36% 39% 42% 44%	<600 100% 100% 100% 100% 100% 100% 100%	M M M F	268 241 222 207 194 184	15% 20% 23% 26% 29% 31%	95% 96% 96% 97% 97%	Class C C C M M	329 298 274 255 240 228	10% 13% 15% 17% 19% 21%	94% 96% 97% 97% 98% 98%	VC VC C C C	424 394 371 352 337 324	4% 5% 6% 7% 8%	86% 89% 91% 92% 93% 94%
-015	0.450 0.481 0.538 0.590 0.637 0.681 0.722 0.761	1.50 1.75 2.00 2.50 3.00 3.50 4.00	1.49 1.73 1.98 2.48 2.97 3.47 3.96	35L/Ha 3.5-14 3.8-15 4.3-17 4.5-18 5-20 5.5-22 5.8-23	50L/Ha 2.5-10 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16	60L/Ha 2.1-8.3 2.3-9 2.4-9.6 2.8-11 3-12 3.3-13 3.5-14	75L/Ha 1.7-6.7 1.8-7.2 1.9-7.7 2.2-8.6 2.4-9.4 2.5-10 2.8-11 3-12 3-12	Class	VMD 195 188 182 172 164 158 152	#4027 <141 22% 25% 28% 32% 36% 39% 42% 44% 46%	<600100%100%100%100%100%100%100%100%100%100%	M M M F F	268 241 222 207 194	15% 20% 23% 26% 29% 31% 34%	95% 96% 96% 97% 97% 97% 98%	Class C C C M M	329 298 274 255 240	10% 13% 15% 17% 19% 21% 22%	94% 96% 97% 97% 98% 98% 99%	VC VC C C C	424 394 371 352 337	4% 5% 6% 7% 8%	86% 89% 91% 92% 93% 94% 95%
-015	0.450 0.481 0.538 0.590 0.637 0.681 0.722	1.50 1.75 2.00 2.50 3.00 3.50 4.00 4.50 5.00	1.49 1.73 1.98 2.48 2.97 3.47 3.96 4.46 4.96	35L/Ha 3.5-14 3.8-15 4.3-17 4.5-18 5-20 5.5-22 5.8-23 6.3-25 6.5-26	50L/Ha 2.5-10 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18	60L/Ha 2.1-8.3 2.3-9 2.4-9.6 2.8-11 3-12 3.3-13 3.5-14 3.5-14 3.8-15	75L/Ha 1.7-6.7 1.8-7.2 1.9-7.7 2.2-8.6 2.4-9.4 2.5-10 2.8-11 3-12	Class	195 188 182 172 164 158 152 148 144	#4027 <141 22% 25% 28% 32% 36% 39% 42% 44%	<600 100% 100% 100% 100% 100% 100% 100%	M M M F F F	268 241 222 207 194 184 175	15% 20% 23% 26% 29% 31%	95% 96% 96% 97% 97%	Class C C C M M M M M	329 298 274 255 240 228 217	10% 13% 15% 17% 19% 21%	94% 96% 97% 97% 98% 98% 99%	VC VC C C C	424 394 371 352 337 324 313	4% 5% 6% 7% 8% 9%	86% 89% 91% 92% 93% 94% 95% 95%
-015	0.450 0.481 0.538 0.590 0.637 0.681 0.722 0.761 0.798 0.834 Flow	1.50 1.75 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00	BAR 1.49 1.73 1.98 2.48 2.97 3.47 3.96 4.46 4.96 5.45 5.95 Tip	35L/Ha 3.5-14 3.8-15 4.3-17 4.5-18 5-20 5.5-22 5.8-23 6.3-25 6.3-25 6.8-27 7.3-29 Sprayer	50L/Ha 2.5-10 2.8-11 3.12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18 4.8-19 5-20 Speed (L/Ha	60L/Ha 2.1-8.3 2.3-9 2.4-9.6 2.8-11 3-12 3.3-13 3.5-14 3.5-14 3.5-14 3.8-15 4-16 4.3-17 on 50cm spi	75L/Ha 1.7-6.7 1.8-7.2 1.9-7.7 2.2-8.6 2.4-9.4 2.5-10 2.8-11 3-12 3-12 3.3-13 3.3-13 acing) @	Class F F F F F F F F	195 188 182 172 164 158 152 148 144 140 137 80-02	#4027 <141 22% 25% 28% 32% 36% 39% 42% 44% 46% 48% 50%	 <600 100% 70-02 	M M F F F F F SR8	268 241 222 207 194 184 175 168 161	15% 20% 23% 26% 29% 31% 34% 35% 37% #4028	95% 96% 96% 97% 97% 98% 98% 98% 38-02	Class C C C M M M M F F F MR8	329 298 274 255 240 228 217 208 200 80-02	10% 13% 15% 17% 19% 21% 22% 23% 24% #402	94% 96% 97% 97% 98% 98% 99% 99% 99%	VC VC C C C C C	424 394 371 352 337 324 313 303 295 30-02	4% 5% 6% 7% 8% 8% 9% 10% 10% #402	86% 89% 91% 92% 93% 94% 95% 95% 80-02
-015	0.450 0.481 0.538 0.590 0.637 0.681 0.722 0.761 0.798 0.834 Flow L/min	1.50 1.75 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 Boom BAR	1.49 1.73 1.98 2.48 2.97 3.47 3.96 4.46 4.96 5.45 5.95 Tip BAR	35L/Ha 3.5-14 3.8-15 4.3-17 4.5-18 5-20 5.5-22 5.8-23 6.3-25 6.5-26 6.8-27 7.3-29 Sprayer 40L/Ha	50L/Ha 2.5-10 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18 4.8-19 5-20 Speed (L/Ha 50L/Ha	60L/Ha 2.1-8.3 2.3-9 2.4-9.6 2.8-11 3-12 3.3-13 3.5-14 3.5-14 3.8-15 4-16 4.3-17 on 50cm spa	75L/Ha 1.7-6.7 1.8-7.2 1.9-7.7 2.2-8.6 2.4-9.4 2.5-10 2.8-11 3-12 3-12 3.3-13 acing) @ 70L/Ha	Class F F F F F F F Class	195 188 182 172 164 158 152 148 144 140 137 80-02	#4027 <141 22% 25% 28% 32% 36% 39% 42% 44% 46% 48% 50% #402 <141	<600 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 70-02 <600	M M M F F F F F SR8	268 241 222 207 194 184 175 168 161	15% 20% 23% 26% 29% 31% 34% 35% 37%	95% 96% 96% 97% 97% 98% 98% 98% 38-02	Class C C C M M M M F F F MR8	329 298 274 255 240 228 217 208 200	10% 13% 15% 17% 19% 21% 22% 23% 24% #402	94% 96% 97% 97% 98% 98% 99% 99%	VC VC C C C C C	424 394 371 352 337 324 313 303 295	4% 5% 6% 7% 8% 8% 9% 10% 10% #402	86% 89% 91% 92% 93% 94% 95% 95% 96%
-015	0.450 0.481 0.538 0.590 0.637 0.681 0.722 0.761 0.798 0.834 Flow L/min 0.554	1.50 1.75 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 Boom BAR 1.50	BAR 1.49 1.73 1.98 2.48 2.97 3.47 3.96 4.46 4.96 5.45 5.95 Tip BAR 1.47	35L/Ha 3.5-14 3.8-15 4.3-17 4.5-18 5-20 5.5-22 5.8-23 6.3-25 6.5-26 6.8-27 7.3-29 Sprayer 40L/Ha 4.3-17	50L/Ha 2.5-10 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18 4.8-19 5-20 Speed (L/Ha 50L/Ha 3.3-13	60L/Ha 2.1-8.3 2.3-9 2.4-9.6 2.8-11 312 3.3-13 3.5-14 3.8-15 4-16 4.3-17 on 50cm spi 60L/Ha 2.8-11	75L/Ha 1.7-6.7 1.8-7.2 1.9-7.7 2.2-8.6 2.4-9.4 2.5-10 2.8-11 3-12 3-12 3.3-13 3.3-13 acing) @ 70L/Ha 2.4-9.5	Class F F F F F F F Class Class F	195 188 182 172 164 158 152 148 144 140 137 80-02 VMD	#4027 <141 22% 25% 28% 32% 36% 39% 42% 44% 46% 48% 50% #402 <141 29%	<600 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 70-02 <600 100%	M M M F F F F F SR8	268 241 222 207 194 184 175 168 161 60-02 VMD	15% 20% 23% 26% 29% 31% 34% 35% 37% #4028	95% 96% 96% 97% 97% 98% 98% 98% 38-02 <600	Class C C C M M M M F F F MR8	329 298 274 255 240 228 217 208 200 80-02	10% 13% 15% 17% 19% 21% 22% 23% 24% #402	94% 96% 97% 97% 98% 98% 99% 99% 99%	VC VC C C C C C	424 394 371 352 337 324 313 303 295 30-02	4% 5% 6% 7% 8% 8% 9% 10% 10% #402	86% 89% 91% 92% 93% 94% 95% 95% 80-02
-015 Nozzles	0.450 0.481 0.538 0.590 0.637 0.681 0.722 0.761 0.798 0.834 Flow L/min 0.554 0.598	1.50 1.75 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 Boom BAR 1.50 1.75	1.49 1.73 1.98 2.48 2.97 3.47 3.96 4.46 4.96 5.45 5.95 Tip BAR 1.47	35L/Ha 3.5-14 3.8-15 4.3-17 4.5-18 5-20 5.5-22 5.8-23 6.3-25 6.3-25 6.8-27 7.3-29 Sprayer 40L/Ha 4.3-17 4.5-18	50L/Ha 2.5-10 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18 4.8-19 5-20 Speed (L/Ha 50L/Ha 3.3-13 3.5-14	60L/Ha 2.1-8.3 2.3-9 2.4-9.6 2.8-11 3-12 3.3-13 3.5-14 3.5-14 3.8-15 4-16 4.3-17 on 50cm spi 60L/Ha 2.8-11 3-12	75L/Ha 1.7-6.7 1.8-7.2 1.9-7.7 2.2-8.6 2.4-9.4 2.5-10 2.8-11 3-12 3-12 3.3-13 3.3-13 acing) @ 70L/Ha 2.4-9.5 2.5-10	Class F F F F F F F Class	195 188 182 172 164 158 152 148 144 140 137 30-02 VMD 182 177	#4027 <141 22% 25% 32% 36% 39% 42% 44% 46% 48% 50% #402 <141 29% 31%	<600 100% 100%	M M M F F F F F F Class	268 241 222 207 194 184 175 168 161 60-02 VMD	15% 20% 23% 26% 29% 31% 34% 35% 37% #4028 <141	95% 96% 96% 97% 97% 98% 98% 98% 88-02 <600	Class C C C M M M M F F F F MR8	329 298 274 255 240 228 217 208 200 80-02 VMD	10% 13% 15% 17% 19% 21% 22% 23% 24% #402 <141	94% 96% 97% 97% 98% 98% 99% 99% 99-02 <600	VC VC C C C C C C C C C C C C C C C C C	424 394 371 352 337 324 313 303 295 30-02 VMD	4% 5% 6% 7% 8% 8% 9% 10% 10% #402 <141	86% 89% 91% 92% 93% 94% 95% 95% 96% 80-02
-015 Nozzles	0.450 0.481 0.538 0.590 0.637 0.681 0.722 0.761 0.798 0.834 Flow L/min 0.554 0.598 0.639	1.50 1.75 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 Boom BAR 1.50 1.75 2.00	BAR 1.49 1.73 1.98 2.48 2.97 3.47 3.96 4.46 4.96 5.45 5.95 Tip BAR 1.47 1.72 1.97	35./Ha 3.5-14 3.8-15 4.3-17 4.5-18 5-20 5.5-22 6.3-25 6.3-25 6.3-25 6.8-27 7.3-29 Sprayer 40./Ha 4.3-17 4.5-18	50L/Ha 2.5-10 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18 4.8-19 5-20 Speed (L/Ha 50L/Ha 3.3-13 3.5-14 3.8-15	60L/Ha 2.1-8.3 2.3-9 2.4-9.6 2.8-11 3-12 3.3-13 3.5-14 3.5-14 3.8-15 4-16 4.3-17 on 50cm spi 60L/Ha 2.8-11 3-12	75L/Ha 1.7-6.7 1.8-7.2 1.9-7.7 2.2-8.6 2.4-9.4 2.5-10 2.8-11 3-12 3-12 3.3-13 3.3-13 acing) @ 70L/Ha 2.4-9.5 2.5-10 2.8-11	Class F F F F F F F Class Class F	195 188 182 172 164 158 152 148 144 140 137 80-02 VMD 182 177	#4027 <141 22% 25% 28% 32% 36% 39% 42% 44% 46% 48% 50% #402 <141 29% 31% 33%	<600 100%	M M M F F F F F F SR8 Class	268 241 222 207 194 184 175 168 161 30-02 VMD	15% 20% 23% 26% 29% 31% 34% 35% 37% #4028 <141 13% 15%	95% 96% 96% 97% 97% 98% 98% 98% 88-02 <600 94% 95%	Class C C C M M M M F F F MR8 Class	329 298 274 255 240 228 217 208 200 80-02 VMD	10% 13% 15% 17% 19% 21% 22% 23% 24% #402 <141	94% 96% 97% 97% 98% 98% 99% 99% 99% 90-02 <600	VC VC C C C C C C C C C C C C C C C C C	424 394 371 352 337 324 313 303 295 80-02 VMD	4% 5% 6% 7% 8% 9% 10% 10% #402 <141	86% 89% 91% 92% 93% 94% 95% 95% 80-02 <600
-015 Nozzles 80 -02	0.450 0.481 0.538 0.590 0.637 0.681 0.722 0.761 0.798 0.834 Flow L/min 0.554 0.598 0.639 0.715	1.50 1.75 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 Boom BAR 1.50 1.75 2.00 2.50	BAR 1.49 1.73 1.98 2.48 2.97 3.47 3.96 4.46 4.96 5.45 5.95 Tip BAR 1.47 1.72 1.97 2.46	35./Ha 3.5-14 3.5-14 3.8-15 4.3-17 4.5-18 5-20 5.5-22 5.8-23 6.3-25 6.5-26 6.8-27 7.3-29 Sprayer 40./Ha 4.3-17 4.5-18 4.8-19 5.3-21	50L/Ha 2.5-10 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18 4.8-19 5-20 Speed (L/Ha 3.3-13 3.5-14 3.8-15 4.3-17	60L/Ha 2.1-8.3 2.3-9 2.4-9.6 2.8-11 3-12 3.3-13 3.5-14 3.5-14 3.8-15 4-16 4.3-17 on 50cm spi 60L/Ha 2.8-11 3.3-12 3.3-13	75L/Ha 1.7-6.7 1.8-7.2 1.9-7.7 2.2-8.6 2.4-9.4 2.5-10 2.8-11 3-12 3.3-13 3.3-13 3.3-13 2.19 2.4-9.5 2.5-10 2.8-11 3-12 3-12 3.3-13 3.3-13	Class F F F F F F F Class Class F	195 188 182 172 164 158 152 148 144 140 137 80-02 VMD 182 177 172 165	#4027 <141 22% 25% 28% 32% 36% 39% 42% 44% 46% 48% 50% #402 <141 29% 31% 33% 37%	<000 100% 100% 100% 100% 100% 100% 100%	M M M F F F F F F SR8 Class	268 241 222 207 194 184 175 168 161 30-02 VMD 274 261 242	15% 20% 23% 26% 29% 31% 34% 35% 37% 44028 <141 13% 15% 19%	95% 96% 96% 97% 97% 98% 98% 98% -600 94% 95% 96%	Class C C C C M M M M M F F F MR8 Class C C C C C C C C C C C C C C C C C C C	329 298 274 255 240 228 217 208 200 80-02 VMD	10% 13% 15% 17% 19% 21% 22% 23% 24% *#402 <141	94% 96% 97% 98% 98% 99% 99% 90-02 <600	VC VC C C C C C C C C C C C C C C C C C	424 394 371 352 337 324 313 303 295 30-02 VMD	4% 5% 6% 7% 8% 8% 10% 10% #402 <141	86% 89% 91% 92% 93% 94% 95% 96% 80-02 <600
-015 Nozzles	0.450 0.481 0.538 0.590 0.637 0.681 0.722 0.761 0.798 0.834 Flow L/min 0.554 0.639 0.715 0.783	1.50 1.75 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 Boom BAR 1.50 1.75 2.00 2.50 3.00	BAR 1.49 1.73 1.98 2.48 2.97 3.47 3.96 4.46 4.96 5.45 5.95 Tip BAR 1.47 1.72 1.97 2.46 2.95	35./Ha 3.5-14 3.8-15 4.3-17 4.5-18 5-20 5.5-22 5.8-23 6.3-25 6.5-26 6.8-27 7.3-29 Sprayer 40L/Ha 4.3-17 4.5-18 4.8-19 5.3-21 5.8-23	50L/Ha 2.5-10 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18 4.8-19 5-20 Speed (L/Ha 50L/Ha 3.3-13 3.5-14 4.8-19 4.8-19	60L/Ha 2.1-8.3 2.3-9 2.4-9.6 2.8-11 3-12 3.3-13 3.5-14 3.5-14 3.8-15 4-16 4.3-17 on 50cm spi 60L/Ha 2.8-11 3-12 3.3-13 3.5-14 4-16	75L/Ha 1.7-6.7 1.8-7.2 1.9-7.7 2.2-8.6 2.4-9.4 2.5-10 2.8-11 3-12 3.3-13 3.3-13 3.3-13 acing) @ 70L/Ha 2.4-9.5 2.5-10 2.8-11 3-12 3.3-13	Class F F F F F F F Class Class F	195 188 182 172 164 158 152 148 144 140 137 30-02 VMD 182 177 172 165 159	#4027 <141 22% 25% 28% 36% 39% 42% 44% 46% 48% 50% <141 29% 31% 33% 37% 39%	<600 100% 100% 100% 100% 100% 100% 100% 1	M M M M F F F F F F SR8 Class C M M M M	268 241 222 207 194 184 175 168 161 60-02 VMD 274 261 242 228	15% 20% 23% 26% 29% 31% 34% 35% 37% #4028 <141 13% 15% 19% 22%	95% 96% 96% 97% 97% 98% 98% 98% 38-02 <600 94% 95% 96% 97%	Class C C C C M M M M M M M F F MR8 Class C C C C C C C C C C C C C C C C C C C	329 298 274 255 240 228 217 208 30-02 VMD	10% 13% 15% 17% 19% 21% 22% 23% 24% *#402 <141 8% 10% 12%	94% 96% 97% 98% 98% 99% 99% 90-02 <600 93% 94% 94%	VC VC C C C C C C C C C C C C C C C C C	424 394 371 352 337 324 313 303 295 80-02 VMD	4% 5% 6% 7% 8% 8% 10% 10% #402 <141	\$600 86% 89% 91% 92% 93% 94% 95% 95% 80-02 \$600 80% 83% 85%
-015 Nozzles 80 -02	0.450 0.481 0.538 0.590 0.637 0.681 0.722 0.761 0.798 0.834 Flow L/min 0.554 0.598 0.639 0.715	1.50 1.75 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 Boom BAR 1.50 2.50 3.00 3.50	BAR 1.49 1.73 1.98 2.48 2.97 3.47 3.96 4.46 4.96 5.45 5.95 Tip BAR 1.47 1.72 1.97 2.46 2.95	35./Ha 3.5-14 3.5-14 3.8-15 4.3-17 4.5-18 5-20 5.5-22 5.8-23 6.3-25 6.5-26 6.8-27 7.3-29 Sprayer 40./Ha 4.3-17 4.5-18 4.8-19 5.3-21	50L/Ha 2.5-10 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18 4.8-19 5-20 Speed (L/Ha 3.3-13 3.5-14 3.8-15 4.3-17	60L/Ha 2.1-8.3 2.3-9 2.4-9.6 2.8-11 3-12 3.3-13 3.5-14 3.5-14 3.8-15 4-16 4.3-17 on 50cm spi 60L/Ha 2.8-11 3.3-12 3.3-13	75L/Ha 1.7-6.7 1.8-7.2 1.9-7.7 2.2-8.6 2.4-9.4 2.5-10 2.8-11 3-12 3.3-13 3.3-13 3.3-13 2.19 2.4-9.5 2.5-10 2.8-11 3-12 3-12 3.3-13 3.3-13	Class F F F F F F F Class Class F	195 188 182 172 164 158 152 148 144 140 137 80-02 VMD 182 177 172 165	#4027 <141 22% 25% 28% 36% 36% 44% 44% 46% 48% 50% #402 <141 29% 31% 33% 33% 33% 42% 44%	<000 100% 100% 100% 100% 100% 100% 100%	M M M M F F F F F SR8 Class	268 241 222 207 194 184 175 168 161 30-02 VMD 274 261 242	15% 20% 23% 26% 29% 31% 34% 35% 37% 44028 <141 13% 15% 19%	95% 96% 96% 97% 97% 98% 98% 98% -600 94% 95% 96%	Class C C C C M M M M M M M F F MR8 Class C C C C C C C C C C C C C C C C C C C	329 298 274 255 240 228 217 208 200 80-02 VMD	10% 13% 15% 17% 19% 21% 22% 23% 24% *#402 <141	94% 96% 97% 98% 98% 99% 99% 99% 99% 90-02 <600	VC VC C C C C C C C C C C C C C C C C C	424 394 371 352 337 324 313 303 295 0-02 VMD	4% 5% 6% 7% 8% 8% 10% 10% #402 <141	\$600 86% 89% 91% 92% 93% 94% 95% 95% 80-02 \$600 80% 83% 85%
-015 Nozzles 80 -02	0.450 0.481 0.538 0.590 0.637 0.681 0.722 0.761 0.783 Plow L/min 0.554 0.639 0.715 0.783 0.846 0.904	1.50 1.75 2.00 2.50 3.50 3.50 4.00 5.50 6.00 Boom BAR 1.50 2.00 2.50 3.50 4.00 4.50 4.50 4.50 4.50 4.50 4.50 4	BAR 1.49 1.73 1.98 2.48 2.97 3.47 3.96 4.46 4.96 5.45 5.95 Tip BAR 1.47 1.72 1.97 2.46 2.95 3.44 3.93 4.42	35./Ha 3.5-14 3.5-14 3.8-15 4.3-17 4.5-18 5-20 5.5-22 5.8-23 6.3-25 6.5-26 6.8-27 7.3-29 Sprayer 40./Ha 4.3-17 4.5-18 4.8-19 5.3-21 5.8-23 6.3-25 6.8-27 7.3-29	50L/Ha 2.5-10 2.8-11 3.12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18 4.8-19 5-20 Speed (L/Ha 3.3-13 3.5-14 3.8-15 4.3-17 4.8-19 5-20 5-20 5-20 5-20 5-20 5-20 5-20 5-20	60L/Ha 2.1-8.3 2.3-9 2.4-9.6 2.8-11 3-12 3.3-13 3.5-14 3.5-14 3.8-15 4-16 4.3-17 on 50cm spi 60L/Ha 2.8-11 3-12 3.3-13 3.5-14 4-16 4.3-17 4.5-18 4.8-19	75L/Ha 1.7-6.7 1.8-7.2 1.9-7.7 2.2-8.6 2.4-9.4 2.5-10 2.8-11 3-12 3.3-13 3.3-13 3.3-13 acting) @ 70L/Ha 2.4-9.5 2.5-10 2.8-11 3-12 3.3-13 3.5-14 3.12 3.3-13 3.5-14 3.12 3.3-13	Class F F F F F F F Class Class F	195 188 182 172 164 158 152 144 140 137 80-02 VMD 182 177 172 165 159 155 151	#4027 <141 22% 25% 28% 36% 39% 42% 44% 46% #402 <141 29% 31% 33% 37% 42% 44% 46% 46%	<000 100% 100% 100% 100% 100% 100% 100%	M M M F F F F F SR8 C C M M M M F F F F F F F F F F F F F F	268 241 222 207 194 184 175 168 161 100-02 VMD 274 261 242 228 216 207 199	<141 15% 20% 23% 26% 29% 31% 34% 35% 44028 <141 13% 15% 19% 22% 24% 26% 28%	95% 96% 97% 97% 98% 98% 8-02 <600 94% 95% 96% 97% 98% 96% 97% 98%	Class C C C C M M M F F F MR8 Class C C C C C M M M M M M M M M M M M M M	329 298 274 255 240 228 217 208 300-02 VMD 331 309 291 277 266 256	10% 13% 15% 17% 19% 22% 23% 24% *#402' <141 8% 10% 12% 15% 16%	94% 96% 97% 98% 98% 99% 99% 99% 99% 94% 94% 94% 95% 95%	VC VC C C C C C C C C C C C C C C C C C	424 394 371 352 337 324 313 303 303 404 461 433 412 380 380 368	4% 5% 6% 7% 8% 8% 9% 10% 10% 440 3% 4% 5% 5% 6%	\$600 86% 89% 91% 92% 93% 95% 95% 96% 80% 83% 83% 83% 83% 84% 84%
-015 Nozzles 80 -02	0.450 0.481 0.538 0.590 0.637 0.681 0.722 0.761 0.798 0.834 Flow L/min 0.554 0.598 0.639 0.715 0.783 0.846 0.904 0.959	1.50 1.75 2.00 2.50 3.00 4.00 4.50 5.50 6.00 1.75 2.00 2.50 3.50 4.50 4.50 4.50 5.50 6.00 1.75 2.00 4.50 4.50 1.75 2.50 3.50 4.50 4.50 4.50 1.75 2.50 4.50 4.50 4.50 1.75 2.50 4.50 1.75 2.50 4.50 1.75 2.50 4.50 1.75 2.50 4.50 1.75 2.50 4.50 1.75 2.50 4.50 1.75 2.50 4.50 1.75 2.50 2.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4	BAR 1.49 1.73 1.98 2.48 2.97 3.47 3.96 4.46 4.96 5.45 5.45 5.95 Tip BAR 1.47 1.72 1.97 2.46 2.95 3.44 4.92	35./Ha 3.5-14 3.5-14 3.8-15 4.3-17 4.5-18 5-20 5.5-22 5.8-23 6.3-25 6.3-25 6.8-27 7.3-29 Sprayer 40L/Ha 4.3-17 4.5-18 4.8-19 5.3-21 5.8-23 6.3-25 6.8-27 7.3-29	50L/Ha 2.5-10 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18 4.8-19 5-20 Speed (L/Ha 50L/Ha 3.3-13 3.5-14 3.8-15 4.3-17 4.8-19 5-20 5.5-20 5.5-22 5.5-22 5.8-23 6-24	60L/Ha 2.1-8.3 2.3-9 2.4-9.6 2.8-11 3-12 3.3-13 3.5-14 3.5-14 3.8-15 4-16 4.3-17 on 50cm spi 60L/Ha 2.8-11 3.3-13 3.5-14 4-16 4.3-17 4.5-18 4.3-17 4.5-18	75L/Ha 1.7-6.7 1.8-7.2 1.9-7.7 2.2-8.6 2.4-9.4 2.5-10 2.8-11 3-12 3.3-13 3.3-13 3.3-13 3.3-13 3.3-13 3.3-13 3.3-13 3.5-14 3.8-15 4-16 4.3-17	Class F F F F F F F Class Class F	195 188 182 172 164 158 152 148 144 140 137 30-02 177 172 165 159 155 151 148 145	#4027 <141 22% 25% 32% 36% 39% 42% 44% 44% 48% 50% #402 <141 29% 33% 37% 33% 37% 42% 44% 46% 47%	<600 100% 100	M M M F F F F SR8 C C M M M M F F F F F F F F F F F F F F	268 241 222 207 194 184 175 168 161 100-02 VMD 274 261 242 228 216 207 199	<141 15% 20% 23% 26% 29% 31% 34% 35% <141 13% 15% 19% 22% 24% 24% 28% 30%	95% 96% 97% 97% 98% 98% 98% 98% 95% 99% 99% 99% 99% 99% 99% 98%	Class C C C C M M M M M F F F F Class C C C C C C C M M M M M M M M M M M M	329 298 274 255 240 228 217 208 300-02 VMD 331 309 291 277 266 256 248	10% 13% 15% 17% 21% 22% 24% 24402 <141 8% 10% 12% 15% 16% 18%	94% 96% 97% 97% 98% 98% 99% 99% 99-02 -600 93% 94% 95% 95%	VC VC C C C C C C C C C C C C C C C C C	424 394 371 352 337 324 313 303 295 30-02 VMD 461 433 412 394 380 368 357	4% 5% 6% 7% 8% 9% 10% #402 <141 3% 4% 5% 6% 6% 7%	\$600 \$86% \$91% \$92% \$93% \$94% \$95% \$95% \$600 \$80-02 \$600 \$80-02 \$808 \$85% \$85
-015 Nozzles 80 -02	0.450 0.481 0.538 0.590 0.637 0.681 0.722 0.761 0.783 Plow L/min 0.554 0.639 0.715 0.783 0.846 0.904	1.50 1.75 2.00 2.50 3.00 4.00 4.50 5.50 6.00 1.75 2.00 2.50 3.50 4.00 4.50 5.50 6.00 1.75 2.50 4.00 5.50 5.50 5.50 6.00 5.50 5.50 6.00 5.50 6.00 5.50 6.00 5.50 6.00 5.50 6.00 5.50 6.00 5.50 6.00 6.0	BAR 1.49 1.73 2.48 2.97 3.97 3.96 4.46 4.96 5.45 5.95 Tip BAR 1.47 1.72 1.97 2.46 2.95 3.44 3.93 4.42 2.95 3.44 4.92 5.95 3.44 4.92 4.92 5.95 3.44 4.96 5.95 3.44 4.96 5.95 3.44 4.96 5.95 3.44 4.96 5.95 3.46 4.96 5.95 3.47 4.96 5.95 3.47 4.96 5.95 3.47 4.96 5.95 3.47 4.96 5.95 3.47 4.96 5.95 3.47 4.96 5.95 3.47 4.96 5.95 3.47 4.96 5.95 3.47 4.96 5.95 3.47 4.96 5.95 3.47 4.96 5.95 3.47 4.96 5.95 5.95 5.95 5.95 5.95 5.95 5.95 5	35./Ha 3.5-14 3.5-14 3.8-15 4.3-17 4.5-18 5-20 5.5-22 5.8-23 6.3-25 6.5-26 6.8-27 7.3-29 Sprayer 40./Ha 4.3-17 4.5-18 4.8-19 5.3-21 5.8-23 6.3-25 6.8-27 7.3-29	50L/Ha 2.5-10 2.8-11 3.12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18 4.8-19 5-20 Speed (L/Ha 3.3-13 3.5-14 3.8-15 4.3-17 4.8-19 5-20 5-20 5-20 5-20 5-20 5-20 5-20 5-20	60L/Ha 2.1-8.3 2.3-9 2.4-9.6 2.8-11 3-12 3.3-13 3.5-14 3.5-14 3.8-15 4-16 4.3-17 on 50cm spi 60L/Ha 2.8-11 3-12 3.3-13 3.5-14 4-16 4.3-17 4.5-18 4.8-19	75L/Ha 1.7-6.7 1.8-7.2 1.9-7.7 2.2-8.6 2.4-9.4 2.5-10 2.8-11 3-12 3.3-13 3.3-13 3.3-13 acting) @ 70L/Ha 2.4-9.5 2.5-10 2.8-11 3-12 3.3-13 3.5-14 3.12 3.3-13 3.5-14 3.12 3.3-13	Class F F F F F F F Class Class F	195 188 182 172 164 158 152 144 140 137 80-02 VMD 182 177 172 165 159 155 151	#4027 <141 22% 25% 36% 32% 44% 44% 46% 50% #402 <141 29% 42% 44% 46% 44% 46% 44% 49%	<000 100% 100% 100% 100% 100% 100% 100%	M M M F F F F SR8 Class C M M M M F F F F F F F F F F F F F F F	268 241 222 207 194 184 175 168 161 00-02 VMD 274 261 242 228 216 207 199	15% 20% 23% 26% 29% 31% 34% 35% 37% #4028 <141 13% 15% 22% 24% 26% 30% 32%	95% 96% 97% 97% 98% 98% 8-02 <600 94% 95% 96% 97% 98% 96% 97% 98%	Class C C C C M M M M M F F F MR8 CClass C C C C C M M M M M M M M M M M M M M	329 298 274 255 240 228 217 208 300-02 VMD 331 309 291 277 266 256	10% 13% 15% 17% 19% 22% 23% 24% *#402' <141 8% 10% 12% 15% 16%	94% 96% 97% 97% 98% 99% 99% 99-02 -600 93% 94% 95% 95% 95%	VC VC C C C C C C C C C C C C C C C C C	424 394 371 352 337 324 313 303 303 404 461 433 412 380 380 368	4% 5% 6% 7% 8% 8% 9% 10% 10% 440 3% 4% 5% 5% 6%	<600 86% 89% 91% 92% 93% 94% 95% 96% 80-02 <600 80% 83% 85% 87% 88% 88% 90% 90% 90%

NOTE: 'SR, MR, DR, UR spray tips include pre-orifice(s). Pre-orifices are not interchangeable between different spray tips of different series. Shown application information is based on water @ 26.5°C in a controlled environment and should not be considered actual. Information is provided for comparison to other Combo-Jet® spray tips, for educational purposes only. Repeat testing results can vary.

COMBO-JET 80° Spray Tips - PWM Spray Systems

ASABE Spray Classification (ASABE S572.1 Standard)
Spray quality is categorized based on Dv.0.1 and VMD droplet sizes
Objective testing data by 3rd party, from spray spectrum recording equipment (without wind tunn
use), has been used to classify spray quality for this chart. Extra data (e.g. VMD, etc.) can vary Fine (F)
Medium (M) Coarse (C)
Very Coarse (VC)
Extremely Coarse (XC)
Ultra Coarse (UC) between testing equipment and method, and is provided as an educational resource only. ized up to 110-06 verified on Phase Doppler Particle Analyzer (PDPA); tips sized over 110-06 verified on Ma

VMD (Volume Median Diameter) The median droplet (in µ) for a sprayed volume. Half of the volume is made of droplets smaller, with half made up of droplets larger.

% <141μ (% Driftable Fines) Percentage of volume which is likely to drift. As wind & boom height increase, observed spray drift will increase substantially.

% <600µ (% of Small Droplets) % of volume which is made up of small' droplets, useful for coverage As % of useful droplets lowers. overall coverage is reduced.

Duty Cycle (Effective 'on time' of solenoid)

The duty cycle is the effective 'on time' of a PWM solenoid. Generally speed ranges are based on a 25% - 100% duty cycle. When selecting a nozzle, often a duty cycle of 60-80% is recommended at typical speeds, providing flexibility for upper speed & turning situations, as well as slower spraying speeds. It is not advised to spray below 40% duty cycle.

Calculating Duty Cycle on Printed Charts (Useful for nozzle sizing & selection) On Wilger printed charts, typically a SPEED RANGE is provided, but the duty cycle % is a dynamic factor based on the sprayers travel speed. To calculate a duty cycle at a given travel speed, divide CURRENT sprayer speed into max nozzle speed. (e.g. 15mph / 20mph max = 75% duty cycle)

1.645 6.00 5.79 8.3-33 6.5-26 5-20 4-16 75 172 39% 99% 1 250 20% 94% C 299 11% 92% C 370 8% 88% 89% 1.08	ррог оросса о																							
Limit 105 261 26		Flow	Boom	Tip	Sprayer	Speed (L/Ha	on 50cm spa	acing) @	ER8	0-025	#4027	0-025	SR8	0-025	#4028	8-025	MR8	0-025	#4029	90-025	DR8	0-025	#4028	0-025
1.088 1.50 1.66 4.5 7 3.5 1.6 3.1 3.2 2.5 1.0 1.0 2.0 1.				BAR					Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600
OZ41 175 177 45-18 3.8-15 3.8-13 2.8-15 M 201 2095 10095 US5																								
1079 2.00 1.06 4.8-10 4.16 3.5-14 3.12 5 212 259 1078 C 302 118 25% C 402																								
Control Cont	80												C	302	11%	02%								
																	VC	400	60/	020/	VC	112	40/	700/
1.652 3.50 3.61 6.32 5.32 4.51 8.41 6. F 183 315 1075 M. 249 189 957 0. 327 958 938 173																								
1125 4.00 3.90 6.9.27 5.9.22 4.9.19 4.3.17 F 177 33% 100% M 228 22% 89% C 327 9% 89% 0. 385 9.8.98 9.8.	Nozzies										29%	100%	IVI			95%	L C							
193 4.50 4.50 4.50 7.5 2.50 6.5 2.5 5.20 4.5 1.6 1.7											31%	100%	IVI				Ü							
1.588 5.50 4.67 75.50 63.22 55.22 52.24 5.70 75.25					6.8-27																			
1.588 5.50 4.67 75.50 63.22 55.22 52.24 5.70 75.25		1.193	4.50	4.39	7.3-29	6-24	5-20	4.5-18		171	35%	100%	M	228	21%	96%	C	323	10%	89%	С	385	6%	85%
1319 5.50 5.80 5.82 5.22 5.22 5.23 5.20 F 162 38% 99% F 27 29% 97% C 201 11% 91% C 367 7% 67% 7% 6		1.258	5.00	4.87	7.5-30		5.5-22	4.8-19	F	167	37%	100%	М	220			С	311	10%	90%	С	376	7%	86%
1378 6.00 6.88 8.3+38 7.28 6.24 5.3+21 7.89 6.24 6.3+21 7.89 7.80 7.89 7.89 7.29 7								5-20	F										11%	91%				87%
Flow Born Tip								5 3-21		159	40%	99%					Ċ				Č			
Description BAN BAN BAN BUFF 724/18 100/Hs 720/Hs 100/Hs 120/Hs 100 Hs 100					Sprayer	Speed (L/Ha	on 50cm en	acing) @																
0.822 1.50 1.45 4.16 3.3-13 2.5-9.9 2.1-9.2 M 231 10% 99%					COL/LIC	ZEL/Ha	1001 /Us	1001/Us	Class	VMD	-1.41	4600	Ologo	V/MD	-1.41	-600	Class	VMID	-1.41	30-03	Class			
0.888 1.75 1.99 4.5-18 3.5-14 2.8-11 2.4-9.5 M 223 20% 99% 1 53 9% 89% 1 5 1 5 9% 89% 1 5 1 5 9% 89% 1 5 1 5 9% 89% 1 5 1 5 9% 89% 1 5 1 5 9% 89% 1 5 1 5 9% 89% 1 5 1 5 9% 89% 1 5 1 5 9% 89% 1 5 1 5 9% 89% 1 5 1 5 9% 89% 1 5 1 5 9% 89% 1 5 1 5 9% 89% 1 5 1 5 9% 89% 1 5 1 5 9% 89% 1 5 9% 89% 1 5 9% 89% 1 5 9% 89% 1 5 9% 89% 1 5 9% 89% 1 5 9% 89% 1 5 9% 89% 1 5 9% 9 5 1 5 9% 89% 1 5 9% 9 5 1 5 9% 89% 1 5 9% 9 5 1 5 9% 89% 1 5 9% 9 5 1 5 9% 89% 1 5 9% 9 5 1 5 9% 89% 1 5 9% 9 5 1 5 9% 9 5 1 5 9% 9 5 1 5 9% 9 5 9 1 5 9 5 9 5 9 5 9 5 9 5 9 5 9 5 9													Ulass	VIVID	<141	<6000	Class	VIVID	<141	<000	Class	VIVID	<141	<000
80 9.950 2.00 1.39 4.8-19 3.8-15 2.8-11 2.4-95 M 277 22% 99% 0. 353 99% 89% 99% 1.50						3.3-13		2.1-8.2																
1.062 2.50 2.41 5.3-21 4.3-17 3.3-13 2.3-11 5 2.07 2.9% 99% 0. 32.5 11% 99% V 409 6% 83.9% XC 462 4% 73% V 400 411 4% 73% V 411 4% V					4.5-18			2.2-8.9	M	223	20%	99%												
1.062 2.50 2.41 5.3.2 4.3.17 3.3.13 2.8.11 5.207 25% 99% 0.325 11% 99% 0.409 6% 83% XC 462 48, 75% 700 411 450 411	80	0.950	2.00	1.93	4.8-19	3.8-15	2.8-11	2.4-9.5	M	217	22%	99%	С	353	9%	89%								
Note 1.63 3.00 2.88 5.8.23 4.8-19 3.5-14 3.12 5.199 27% 99% 0. 304 13% 91% 0. 383 7% 86% 0. 424 5% 87% 0. 424 5% 6% 0. 424 5% 6% 0. 424 5% 6% 0. 424 5% 6% 0. 424 5% 6% 0. 424 5% 6% 0. 424 5% 6% 0. 424 5% 6% 0. 424 5% 6% 0. 424 5% 6% 0. 424 5% 6% 0. 424 5%	-03	1.062	2.50	2.41		4.3-17	3.3-13	2.8-11	F	207	25%	99%	С				VC	409	6%	83%	XC	462	4%	75%
1.266 3.50 3.38 6.3.25 5.20 3.8-15 3.3-13 F 193 29% 99% 0 287 15% 92% 0 3.62 8% 87% 0 0 424 5% 89% 1 1.342 4.50 4.34 7.28 5.8-22 4.3-17 3.5-14 F 183 32% 99% 0 2.61 17% 99% 0 3.31 10% 91% 0 3.80 6.8 88% 1 1.502 5.00 4.82 7.5-30 6.24 4.3-18 3.8-15 F 179 3.8 99% 0 2.61 17% 99% 0 3.31 10% 91% 0 3.87 7% 8.84% 1.502 5.00 4.82 7.5-30 6.24 4.3-18 3.8-15 F 179 3.8 99% 0 2.61 17% 99% 0 3.31 10% 91% 0 3.77 7% 8.84% 1.502 5.00 4.82 7.5-30 6.24 4.3-18 3.8-15 5 F 179 3.85% 99% 0 2.61 17% 99% 0 3.31 10% 91% 0 3.77 7% 8.84% 1.502 5.00 5.00 5.00 7.8 10.00 1.00 1.00 1.00 1.00 1.00 1.00 1		1 163	3.00	2 89				3-12																
1.343 4.00 3.86 6.8-27 5.3-21 4-16 3.3-13 F 187 31% 99% 02 231 16% 99% 02 341 69% 03 98% 03 86 8.8 88 150	14022100							2 2 12																
1.424 4.50 4.34 7.28 5.8-23 4.3-17 3.5-14 5 133 32% 99% M 261 17% 93% 0.331 10% 91% 0.337 7% 83% 1505 5.50 5.30 7.8-31 6.3-25 4.8-19 4.16 5 175 35% 99% M 243 19% 94% 0.308 11% 91% 0.337 7% 83% 89% 1.65 6.00 5.79 3.3-33 6.5-26 5.20 4.16 5 172 35% 99% M 243 19% 94% 0.308 11% 91% 0.337 7% 83% 89% 1.65 6.00 5.79 3.3-33 6.5-26 5.20 4.16 5 172 3.5% 99% M 243 19% 94% 0.308 11% 91% 0.337 7% 83% 99% 1.05						5-20		2.3-13																
1.502 5.00 4.82 7.5-30 6-24 4.5-18 3.8-15 7.5 179 34% 99% M 251 18% 93% C 379 18% 97% 6 377 7% 84% 1575 5.50 5.30 7.78 83% 1575 5.50 5.30 7.78 83% 1575 5.50 5.30 7.78 83% 1575 5.50 5.30 7.78 83% 1575 83.33 6.5-26 5.20 4.16 F 172 38% 99% M 235 29% 94% 0 289 11% 92% 0 370 8% 88% 1576 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0								3.3-13		10/	31%	99%			10%	92%	C C			09%				02%
1.575 5.50 5.30 7.8-31 6.3-25 4.8-19 4-16 5 175 35% 99% M 243 19% 94% C 308 11% 91% C 378 7% 85% 85% Flow Boom Tp Sprgyer Speed (Lift on 50cm spacing) ⊕ E880-04 #40270-04 S680-04 #40280-04 MR00-04 MR								3.5-14		183	32%	99%			1/%	93%	Ü		10%	90%				83%
1.575 5.50 5.30 7.8-31 6.3-25 4.8-19 4-16 5 175 35% 99% M 243 19% 94% C 308 11% 91% C 378 7% 85% 85% F6W BOOM TID Surger Speed (LHz on 550m spacing) © F6W BOOM TID Surger Speed (LHz on 550m spacin						6-24		3.8-15		179	34%	99%			18%	93%	С							
1.645 6.00 5.79 8.3-33 6.5-26 5-20 4-16 5 72 36% 99% M 235 20% 94% C 299 11% 92% G 370 8% 86% 1.08		1.575	5.50	5.30	7.8-31								M		19%	94%	С					378		85%
Flow Boom Tip Surgers Speed (LHa on 50cm spacing)					8.3-33	6.5-26	5-20	4-16					M		20%	94%						370	8%	
Limin BAR BAR 75U-ha 100U-ha 125U-ha 50U-ha 050U-ha					Spraver	Speed (L/Ha	on 50cm sna	acing) @																
1.08 1.50 1.41 4.3-17 3.3-13 2.5-10 2.2-8.6 M 250 17% 99% 1.25 2.00 1.87 5-20 3.8-15 3.12 2.5-10 M 235 20% 99% C 3.8 8% 88% C 405 6% 82% XC 527 2% 65% 68% 1.25 2.00 1.87 5-20 3.8-15 3.12 2.5-10 M 235 20% 99% C 3.8 8% 88% C 405 6% 82% XC 527 2% 65% 68% 1.25 3.00 2.81 6-24 4.5-18 3.8-15 3-12 F 2.15 24% 99% C 231 1.0% 89% C 383 7% 84% XC 504 3% 68% 68% 1.77 4.00 3.75 7-28 5.3-21 4.3-17 3.5-14 F 202 27% 99% C 236 1.3% 91% O 3.66 8% 88% XC 405 6% 86% XC 411 471				BAR	751./Ha	100L/Ha	125L/Ha	150L/Ha																
1.17 1.75 1.64 4.8-19 3.5-14 2.8-11 2.3-9.3 M 242 19% 99% 1.00					4 3-17						17%	90%	Siddo	THIE		- 2000	حامات	THIE		1000	Orado	TIVID	- T-11	2000
1.25 2.00 1.87 5-20 3.8-15 3-12 2.5-10 M 235 20% 99% C 360 6% 86% 86% C 405 6% 82% X 527 2% 65% 68% 87% X 527 2% 65% 68% 86% X 527 2% 65% 68% 86% X 527 2% 65% 36%						2.5-13																		
1.40	00					3.5-14		2.3-9.3			10%	99%	_	000	00/	000/								
Nozzles 1.53 3.00 2.81 6.24 4.5-18 3.8-15 3.1-2 F 215 24% 89% C 281 10% 89% C 333 7% 84% XC 504 3% 68% 71% 1.877 4.00 3.75 7.28 5.3-21 4.3-17 3.5-14 F 202 27% 89% C 281 13% 91% C 351 91% 80% KC 486 4% 71% 1.877 4.00 4.25 7.5-30 5.5-22 4.5-18 3.8-15 F 197 28% 99% M 286 15% 92% C 339 10% 88% KC 486 4% 75% 4.9-17 4.9-					5-20			2.5-10																
1.65 3.50 3.28 6.5-26 5-20 4-16 3.3-13 F 208 25% 99% C 286 11% 90% C 366 8% 86% XC 486 4% 77% 1.97 4.00 3.75 7-28 5.3-21 4.3-17 F 202 27% 99% C 281 84% 92% C 339 11% 89% XC 471 4% 74% 74% 1.97 5.00 4.69 8-32 6-24 4.8-18 3.8-15 F 197 28% 99% M 288 14% 92% C 339 11% 89% VC 486 5% 77% 2.07 5.50 5.15 8.3-33 6.3-25 5-20 4.3-17 F 189 30% 99% M 281 14% 92% C 339 11% 89% VC 486 5% 77% 2.16 6.00 5.65 8.8-33 6.3-25 5-20 4.3-17 F 189 30% 99% M 281 14% 92% C 339 11% 89% VC 486 5% 77% 2.16 6.00 5.65 8.8-33 6.3-25 5-20 4.3-17 F 189 30% 99% M 261 14% 30% C 319 11% 89% VC 486 5% 77% P6 100 100 100 100 100 100 100 100 100 10	-04							2.8-11					С				VC			82%				
1.77 4.00 3.75 7-28 53-21 4.3-17 3.5-14 F 202 27% 99% 0 281 13% 91% 0 351 9% 87% KC 471 4% 74% 174 197 5.00 4.99 8-32 6-24 4.8-19 4-16 F 193 29% 99% M 284 184% 92% 0 339 10% 88% KC 456 4% 75% 197 5.00 5.15 5.05 5.15 3.3-33 6.3-25 5-20 4.3-17 F 189 30% 99% M 264 15% 93% 0 319 12% 99% C 446 5% 77% 197 5.00 5.05 5.15 5.15 3.3-33 6.3-25 5-20 4.3-17 F 189 30% 99% M 245 15% 93% 0 319 12% 99% C 427 5% 78% 78% 78% 78% 78% 78% 78% 78% 78% 78	Nozzles	1.53	3.00	2.81			3.8-15	3-12	F	215			С	314			C	383	7%	84%	XC	504	3%	68%
1.77 4.00 3.75 7-28 53-21 4.3-17 3.5-14 F 202 27% 99% 0 281 13% 91% 0 351 9% 87% KC 471 4% 74% 174 197 5.00 4.99 8-32 6-24 4.8-19 4-16 F 193 29% 99% M 284 184% 92% 0 339 10% 88% KC 456 4% 75% 197 5.00 5.15 5.05 5.15 3.3-33 6.3-25 5-20 4.3-17 F 189 30% 99% M 264 15% 93% 0 319 12% 99% C 446 5% 77% 197 5.00 5.05 5.15 5.15 3.3-33 6.3-25 5-20 4.3-17 F 189 30% 99% M 245 15% 93% 0 319 12% 99% C 427 5% 78% 78% 78% 78% 78% 78% 78% 78% 78% 78		1.65	3.50	3.28	6.5-26	5-20	4-16	3.3-13	F	208	25%	99%	С	296	11%	90%	С	366	8%	86%	XC	486	4%	71%
1.87 4.50 4.22 7.5-30 5.5-22 4.5-18 3.8-15 F 197 29% 99% M 268 14% 92% C 339 10% 88% KC 456 4% 75% 194 195 5.00 4.69 8-32 6-24 4.8-19 4.1-6 F 193 29% 99% M 265 16% 93% C 329 11% 89% W C 465 5% 77% 29.7 5.50 5.15 8.3-33 6.3-25 5-20 4.3-17 F 189 30% 99% M 245 16% 93% C 319 12% 90% KC 436 5% 77% 29.6 6.00 5.6 6.00 5.6 5.26 5.5-26 5.2-1 4.3-17 F 189 30% 99% M 245 16% 93% C 319 12% 90% KC 436 5% 78% 195 100 M 100 M 100 M 100 50cm spacing)						5.3-21	4.3-17	3.5-14	F						13%	91%	С					471	4%	
1.97 5.00 4.69 8-32 6-24 4.8-19 4-16 F 193 29% 99% M 266 15% 92% C 329 11% 89% 0C 446 5% 77% 22 16 6.00 5.62 8.3-35 6.5-26 5.3-21 4.3-17 F 189 30% 99% M 265 15% 92% C 319 12% 99% C 436 59% 78% 78% 216 6.00 5.62 8.3-35 6.5-26 5.3-21 4.3-17 F 189 30% 99% M 265 15% 92% C 319 12% 99% C 427 55% 79% 99% M 265 15% 92% C 319 12% 99% C 427 55% 79% 99% M 265 15% 92% C 311 12% 99% C 427 55% 79% 99% D 265 15% 92% C 311 12% 99% C 427 55% 79% 99% C 311 12% 99% C 311 12% 99% C 427 55% 79% 99% C 311 12% 99% C 427 55% 79% 99% C 311 12% 99% C 427 55% 79% 99% C 311 12% 99% C 427 55% 79% 99% C 427 55% 75% 99% C 427 55% 99% C 427 55% 99% C 427 55% 95% C 428 55% 75% 95% C					7 5-30	5.5-22		3.8-15				99%				92%	Č							
2.07 5.50 5.15 8.3-33 6.3-25 5.20 4.3-17 F 189 30% 99% M 245 16% 93% C 319 12% 90% OC 436 5% 78% 78% F 189 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						6.24		1.16				000/-				020/-	0							
Column C						0-24		4-10				000/				020/								
Flow Born Tip Surveyer Speed (LHa on 50cm spacing)								4.3-17		109	30%	99%			10%	93%	U C		12%	90%				
					8.8-35			4.3-17		186	31%	99%	IVI	235	1/%	93%	U		12%	90%				
1.33 1.50 1.36 4.16 3.3-13 2.8-11 2.3-9.1 C 297 11% 95%					Sprayer	Speed (L/Ha	on 50cm spa	acing) @	ER	80-05	#402	70-05	SRE	0-05	#4028	88-05	MR8	30-05	#402	90-05				
1.43 1.75 1.59					100L/Ha		150L/Ha				<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600
1.43 1.75 1.59																								
80		1.33	1.50	1.36	4-16	3.3-13	2.8-11	2.3-9.1	C	297	11%	95%												
Nozzles 1.72								2.3-9.1 2.5-9.8	C	297 286	11%	95% 95%												
Nozzles 1.88 3.00 2.72 5.8-23 4.5-18 3.8-15 3.3-13 M 249 20% 95% C 351 10% 85% VC 447 4% 73% XC 540 2% 62% 62% 2.33 3.50 3.17 6.2-4 4.8-19 4-16 3.5-14 M 240 21% 95% C 313 12% 88% VC 448 5% 76% XC 522 3% 65% 65% 2.34 4.5-18 4.16 M 225 24% 95% C 281 14% 89% VC 443 5% 76% XC 506 3% 67% 2.30 4.50 4.08 7-28 5.5-22 4.5-18 4-16 M 225 24% 95% C 281 14% 89% VC 443 5% 4.8 6.5-26 5.3-21 4.3-17 M 219 26% 95% C 281 14% 89% VC 448 6% 79% XC 493 3% 70% XC 540 2.4 4.8 4.16 M 225 24% 95% C 281 14% 89% VC 448 6% 79% XC 493 3% 70% XC 24% 25% 24% 25% 24% 25% 24% 25% 24% 25% 24% 24% 25% 24% 2	80	1.43	1.75	1.59	4.3-17	3.5-14	2.8-11	2.5-9.8		286	11% 13%	95%	VC	404	6%	81%								
2.03 3.50 3.17 6.24 48.19 4-16 3.5-14 M 240 279 85% C 331 11% 87% VC 448 5% 76% XC 522 3% 65% 21 4.5-17 4.00 8.62 6.5-26 5.3-21 4.3-17 3.8-15 M 232 23% 95% C 331 11% 87% VC 448 5% 76% XC 522 3% 65% 67% 320 4.50 4.08 7-28 5.5-22 4.5-18 4-16 M 225 24% 95% C 281 15% 89% VC 431 8 6% 79% XC 493 3% 70% 2.54 5.50 4.98 7.3-29 5.8-23 4.8-19 4.3-17 M 219 26% 95% C 281 15% 89% VC 471 86% 79% XC 493 3% 70% 2.54 5.50 4.98 7.3-29 5.8-23 4.8-19 4.3-17 M 219 26% 95% C 271 15% 90% C 396 7% 82% VC 471 48.2 4% 77% 70% 2.66 6.00 5.43 8-32 6.5-26 5.3-21 4.5-18 F 209 28% 95% M 260 16% 91% C 387 7% 83% VC 462 4% 74% 73% 2.66 6.00 5.43 8-32 6.5-26 5.3-21 4.5-18 F 209 28% 95% M 260 16% 91% C 387 7% 83% VC 462 4% 74% 73% 2.66 6.00 7.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4		1.43 1.53	1.75 2.00	1.59 1.81	4.3-17 4.5-18	3.5-14 3.8-15	2.8-11 3-12	2.5-9.8 2.8-11	С	286 276	11% 13% 15%	95% 95%					YC.	/01				563	20%	58%
2.17 4.00 3.62 6.5-26 5.3-21 4.3-17 3.8-15 M 232 23% 95% C 313 12% 88% VC 432 5% 78% XC 506 3% 67% 2.34 5.00 4.50 4.08 7-28 5.5-22 4.5-18 4-16 M 225 24% 95% C 284 15% 89% VC 418 6% 79% XC 506 3% 67% 2.43 5.00 4.53 7.3-29 5.8-23 4.8-19 4.3-17 M 219 26% 95% C 284 15% 89% VC 418 6% 79% XC 407 6% 81% XC 492 4% 71% 2.5-16 6.00 5.43 8-32 6.5-26 5.3-21 4.5-18 F 209 28% 95% C 272 15% 90% C 396 7% 82% VC 414 47 47 71% 73 4.5-14 5.10 1.5 1.7 1.5 1.4 1.5 1.7 1.5 1.4 1.5 1.7 1.5 1.4 1.5 1.7 1.5 1.4 1.5 1.7 1.5 1.4 1.5 1.7 1.5 1.4 1.5 1.7 1.5 1.4 1.5 1.7 1.5 1.4 1.5 1.7 1.5 1.4 1.5 1.7 1.5 1.4 1.5 1.7 1.5 1.4 1.5 1.7 1.5 1.4 1.5 1.7 1.5 1.4 1.5 1.7 1.5 1.4 1.5 1.7 1.5 1.4 1.5 1.7 1.5 1.4 1.5 1.7 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	-05	1.43 1.53 1.72	1.75 2.00 2.50	1.59 1.81 2.26	4.3-17 4.5-18 5.3-21	3.5-14 3.8-15 4-16	2.8-11 3-12 3.5-14	2.5-9.8 2.8-11 3-12	C M	286 276 261	11% 13% 15% 17%	95% 95% 95%	С	375	8%	84%			3%	70%	XC			58%
2.30 4.50 4.08 7-28 55-22 4.5-18 4-16 M 225 24% 95% C 298 14% 89% C 418 6% 79% XC 493 3% 70% 2.43 5.00 4.53 7.3-29 5.8-23 4.8-19 4.3-17 F 214 27% 95% C 298 15% 89% C 407 6% 81% XC 482 4% 71% 2.54 5.50 4.98 7.8-31 6-24 5-20 4.3-17 F 214 27% 95% C 272 15% 90% C 396 7% 82% VC 471 4% 73% 2.6 6 6.00 5.43 8-32 6.5-26 5.3-21 4.5-18 F 209 28% 95% M 260 16% 91% C 337 7% 83% VC 462 4% 71% 73% 2.5 6 6.00 5.43 8-32 6.5-26 5.3-21 4.5-18 F 209 28% 95% M 260 16% 91% C 337 7% 83% VC 462 4% 74% 74% 1.6 9.5 6 1.5 6 1.5 6 1.5 6 1.5 6 1.5 6 1.5 6 1.5 2 1.5 8 1.5 1	-05	1.43 1.53 1.72 1.88	1.75 2.00 2.50 3.00	1.59 1.81 2.26 2.72	4.3-17 4.5-18 5.3-21 5.8-23	3.5-14 3.8-15 4-16 4.5-18	2.8-11 3-12 3.5-14 3.8-15	2.5-9.8 2.8-11 3-12 3.3-13	M M	286 276 261 249	11% 13% 15% 17% 20%	95% 95% 95% 95%	C C	375 351	8% 10%	84% 85%	VC	467	3% 4%	70% 73%	XC XC	540	2%	62%
2.43 5.00 4.53 7.3-29 5.8-23 4.8-19 4.3-17 M 219 26% 95% C 284 15% 89% C 407 6% 81% XC 482 4% 71% 2.56 6.00 5.43 8-32 6.5-26 5.3-21 4.5-18 F 219 28% 95% M 260 16% 91% C 387 7% 83% VC 471 4% 73% YC 481 4 4.50 16% 91% C 385 VMD 2.41 2.60 16% 91% VC 439 4% 78% U 4.81 2.60 16% 91% VC 431 2.60 16%	-05	1.43 1.53 1.72 1.88 2.03	1.75 2.00 2.50 3.00 3.50	1.59 1.81 2.26 2.72 3.17	4.3-17 4.5-18 5.3-21 5.8-23 6-24	3.5-14 3.8-15 4-16 4.5-18 4.8-19	2.8-11 3-12 3.5-14 3.8-15 4-16	2.5-9.8 2.8-11 3-12 3.3-13 3.5-14	M M M	286 276 261 249 240	11% 13% 15% 17% 20% 21%	95% 95% 95% 95% 95%	C C	375 351 331	8% 10% 11%	84% 85% 87%	VC VC	467 448	3% 4% 5%	70% 73% 76%	XC XC XC	540 522	2% 3%	62% 65%
2.54 5.50 4.98 7.8-31 6-24 5-20 4.3-17 F 214 27% 95% C 272 15% 90% C 396 7% 82% VC 471 4% 73% 73% VC 462 4% 74% 74% 74% 74% 74% 74% 74% 74% 74%	-05	1.43 1.53 1.72 1.88 2.03 2.17	1.75 2.00 2.50 3.00 3.50 4.00	1.59 1.81 2.26 2.72 3.17 3.62	4.3-17 4.5-18 5.3-21 5.8-23 6-24 6.5-26	3.5-14 3.8-15 4-16 4.5-18 4.8-19 5.3-21	2.8-11 3-12 3.5-14 3.8-15 4-16 4.3-17	2.5-9.8 2.8-11 3-12 3.3-13 3.5-14 3.8-15	M M M	286 276 261 249 240 232	11% 13% 15% 17% 20% 21% 23%	95% 95% 95% 95% 95%	CCCC	375 351 331 313	8% 10% 11% 12%	84% 85% 87% 88%	VC VC VC	467 448 432	3% 4% 5% 5%	70% 73% 76% 78%	XC XC XC XC	540 522 506	2% 3% 3%	62% 65% 67%
2.54 5.50 4.98 7.8-31 6-24 5-20 4.3-17 F 214 27% 95% C 272 15% 90% C 396 7% 82% VC 471 4% 73% 73% VC 462 4% 74% 74% 74% 74% 74% 74% 74% 74% 74%	-05	1.43 1.53 1.72 1.88 2.03 2.17	1.75 2.00 2.50 3.00 3.50 4.00 4.50	1.59 1.81 2.26 2.72 3.17 3.62 4.08	4.3-17 4.5-18 5.3-21 5.8-23 6-24 6.5-26 7-28	3.5-14 3.8-15 4-16 4.5-18 4.8-19 5.3-21 5.5-22	2.8-11 3-12 3.5-14 3.8-15 4-16 4.3-17 4.5-18	2.5-9.8 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16	M M M	286 276 261 249 240 232 225	11% 13% 15% 17% 20% 21% 23% 24%	95% 95% 95% 95% 95% 95%	C C C C	375 351 331 313 298	8% 10% 11% 12% 14%	84% 85% 87% 88% 89%	VC VC VC	467 448 432	3% 4% 5% 5%	70% 73% 76% 78%	XC XC XC XC	540 522 506 493	2% 3% 3%	62% 65% 67% 70%
Record Flow Boom Tip Sprayer Speed (L/Ha on 50cm spacing) @ Flow L/min BAR BAR T25L/Ha 175L/Ha 20U/Ha 175L/Ha 175L/Ha 20U/Ha 175L/Ha 17	-05	1.43 1.53 1.72 1.88 2.03 2.17 2.30	1.75 2.00 2.50 3.00 3.50 4.00 4.50 5.00	1.59 1.81 2.26 2.72 3.17 3.62 4.08 4.53	4.3-17 4.5-18 5.3-21 5.8-23 6-24 6.5-26 7-28	3.5-14 3.8-15 4-16 4.5-18 4.8-19 5.3-21 5.5-22 5.8-23	2.8-11 3-12 3.5-14 3.8-15 4-16 4.3-17 4.5-18 4.8-19	2.5-9.8 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17	M M M M M	286 276 261 249 240 232 225 219	11% 13% 15% 17% 20% 21% 23% 24% 26%	95% 95% 95% 95% 95% 95% 95%	C C C C	375 351 331 313 298 284	8% 10% 11% 12% 14% 15%	84% 85% 87% 88% 89%	VC VC VC VC	467 448 432 418 407	3% 4% 5% 5% 6%	70% 73% 76% 78% 79% 81%	XC XC XC XC	540 522 506 493	2% 3% 3% 3%	62% 65% 67% 70% 71%
Flow Boom Tip Sprayer Speed (L/Ha on 50cm spacing)	-05	1.43 1.53 1.72 1.88 2.03 2.17 2.30 2.43	1.75 2.00 2.50 3.00 3.50 4.00 4.50 5.00	1.59 1.81 2.26 2.72 3.17 3.62 4.08 4.53	4.3-17 4.5-18 5.3-21 5.8-23 6-24 6.5-26 7-28 7.3-29	3.5-14 3.8-15 4-16 4.5-18 4.8-19 5.3-21 5.5-22 5.8-23	2.8-11 3-12 3.5-14 3.8-15 4-16 4.3-17 4.5-18 4.8-19	2.5-9.8 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17	M M M M M	286 276 261 249 240 232 225 219	11% 13% 15% 17% 20% 21% 23% 24% 26%	95% 95% 95% 95% 95% 95% 95%	C C C C	375 351 331 313 298 284	8% 10% 11% 12% 14% 15%	84% 85% 87% 88% 89% 89%	VC VC VC VC	467 448 432 418 407	3% 4% 5% 5% 6% 6%	70% 73% 76% 78% 79% 81%	XC XC XC XC XC	540 522 506 493 482	2% 3% 3% 3% 4%	62% 65% 67% 70% 71%
L/min BAR BAR 125L/Ha 150L/Ha 175L/Ha 200L/Ha Class VMD <141 <600 Class VMD <141 <60	-05	1.43 1.53 1.72 1.88 2.03 2.17 2.30 2.43 2.54	1.75 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50	1.59 1.81 2.26 2.72 3.17 3.62 4.08 4.53 4.98	4.3-17 4.5-18 5.3-21 5.8-23 6-24 6.5-26 7-28 7.3-29 7.8-31	3.5-14 3.8-15 4-16 4.5-18 4.8-19 5.3-21 5.5-22 5.8-23 6-24	2.8-11 3-12 3.5-14 3.8-15 4-16 4.3-17 4.5-18 4.8-19 5-20	2.5-9.8 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.3-17	M M M M M	286 276 261 249 240 232 225 219 214	11% 13% 15% 17% 20% 21% 23% 24% 26% 27%	95% 95% 95% 95% 95% 95% 95% 95%	C C C C C C	375 351 331 313 298 284 272	8% 10% 11% 12% 14% 15% 15%	84% 85% 87% 88% 89% 89%	VC VC VC C C	467 448 432 418 407 396	3% 4% 5% 5% 6% 6% 7%	70% 73% 76% 78% 79% 81% 82%	XC XC XC XC XC XC	540 522 506 493 482 471	2% 3% 3% 3% 4% 4%	62% 65% 67% 70% 71% 73%
1.69	-05	1.43 1.53 1.72 1.88 2.03 2.17 2.30 2.43 2.54 2.66	1.75 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00	1.59 1.81 2.26 2.72 3.17 3.62 4.08 4.53 4.98 5.43	4.3-17 4.5-18 5.3-21 5.8-23 6-24 6.5-26 7-28 7.3-29 7.8-31 8-32	3.5-14 3.8-15 4-16 4.5-18 4.8-19 5.3-21 5.5-22 5.8-23 6-24 6.5-26	2.8-11 3-12 3.5-14 3.8-15 4-16 4.3-17 4.5-18 4.8-19 5-20 5.3-21	2.5-9.8 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.3-17	M M M M M M	286 276 261 249 240 232 225 219 214 209	11% 13% 15% 17% 20% 21% 23% 24% 26% 27% 28%	95% 95% 95% 95% 95% 95% 95% 95% 95%	C C C C C C	375 351 331 313 298 284 272 260	8% 10% 11% 12% 14% 15% 15% 16%	84% 85% 87% 88% 89% 89% 90% 91%	VC VC VC C C	467 448 432 418 407 396 387	3% 4% 5% 5% 6% 6% 7% 7%	70% 73% 76% 78% 79% 81% 82% 83%	XC XC XC XC XC XC VC	540 522 506 493 482 471 462	2% 3% 3% 3% 4% 4% 4%	62% 65% 67% 70% 71% 73% 74%
80	-05	1.43 1.53 1.72 1.88 2.03 2.17 2.30 2.43 2.54 2.66 Flow	1.75 2.00 2.50 3.00 3.50 4.00 4.50 5.50 6.00 Boom	1.59 1.81 2.26 2.72 3.17 3.62 4.08 4.53 4.98 5.43	4.3-17 4.5-18 5.3-21 5.8-23 6-24 6.5-26 7-28 7.3-29 7.8-31 8-32 Sprayer	3.5-14 3.8-15 4-16 4.5-18 4.8-19 5.3-21 5.5-22 5.8-23 6-24 6.5-26 Speed (L/Ha	2.8-11 3-12 3.5-14 3.8-15 4-16 4.3-17 4.5-18 4.8-19 5-20 5.3-21 on 50cm spi	2.5-9.8 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.3-17 4.5-18 acing) @	M M M M M M F F	286 276 261 249 240 232 225 219 214 209 80-06	11% 13% 15% 17% 20% 21% 23% 24% 26% 27% 28% #402	95% 95% 95% 95% 95% 95% 95% 95% 95% 95%	C C C C C C C	375 351 331 313 298 284 272 260 60-06	8% 10% 11% 12% 14% 15% 15% 16% #4028	84% 85% 87% 88% 89% 90% 91% 88-06	VC VC VC C C C	467 448 432 418 407 396 387 80-06	3% 4% 5% 5% 6% 6% 7% 7% #402	70% 73% 76% 78% 79% 81% 82% 83% 90-06	XC XC XC XC XC XC VC VC	540 522 506 493 482 471 462 30-06	2% 3% 3% 4% 4% 4% 4%	62% 65% 67% 70% 71% 73% 74% 80-06
Nozzles 2.39 3.50 2.61 5.3-21 4.5-18 3.8-15 3.3-13 C 283 19% 91% C 380 7% 85% XC 481 4% 71% XC 553 2% 59% 59% 2.55 4.00 3.48 6-24 5-20 4.3-17 3.8-15 M 266 22% 90% C 367 8% 86% XC 481 4% 71% XC 553 2% 59% 2.55 4.00 3.48 6-24 5-20 4.3-17 3.8-15 M 266 22% 90% C 367 8% 86% VC 467 4% 74% XC 539 2% 61% 50% 2.71 4.50 3.91 6.5-26 5.5-22 4.8-19 4-16 M 260 23% 90% C 356 9% 87% VC 454 5% 75% XC 526 3% 63% 2.85 5.00 4.35 6.8-27 5.8-23 5-20 4.3-17 M 254 25% 90% C 347 9% 88% VC 443 5% 77% XC 516 3% 64% 2.99 5.50 4.78 7.3-29 6-24 5.3-21 4.5-18 M 250 26% 90% C 331 10% 90% VC 425 6% 79% XC 498 3% 67% 478	-05	1.43 1.53 1.72 1.88 2.03 2.17 2.30 2.43 2.54 2.66 Flow L/min	1.75 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 Boom BAR	1.59 1.81 2.26 2.72 3.17 3.62 4.08 4.53 4.98 5.43 Tip BAR	4.3-17 4.5-18 5.3-21 5.8-23 6-24 6.5-26 7-28 7.3-29 7.8-31 8-32 Sprayer 125L/Ha	3.5-14 3.8-15 4-16 4.5-18 4.8-19 5.3-21 5.5-22 5.8-23 6-24 6.5-26 Speed (L/Ha 150L/Ha	2.8-11 3-12 3.5-14 3.8-15 4-16 4.3-17 4.5-18 4.8-19 5-20 5.3-21 on 50cm sp: 175L/Ha	2.5-9.8 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.3-17 4.5-18 acing) @ 200L/Ha	M M M M M M F F ER8	286 276 261 249 240 232 225 219 214 209 80-06 VMD	11% 13% 15% 20% 21% 23% 24% 26% 27% 28% #402 <141	95% 95% 95% 95% 95% 95% 95% 95% 95% 70-06	C C C C C C C	375 351 331 313 298 284 272 260 60-06	8% 10% 11% 12% 14% 15% 15% 16% #4028	84% 85% 87% 88% 89% 90% 91% 88-06	VC VC VC C C C	467 448 432 418 407 396 387 80-06	3% 4% 5% 5% 6% 6% 7% 7% #402	70% 73% 76% 78% 79% 81% 82% 83% 90-06	XC XC XC XC XC XC VC VC	540 522 506 493 482 471 462 30-06	2% 3% 3% 4% 4% 4% 4%	62% 65% 67% 70% 71% 73% 74% 80-06
Nozzles 2.39 3.50 2.61 5.3-21 4.5-18 3.8-15 3.3-13 C 283 19% 91% C 380 7% 85% XC 481 4% 71% XC 553 2% 59% 59% 2.55 4.00 3.48 6-24 5-20 4.3-17 3.8-15 M 266 22% 90% C 367 8% 86% XC 481 4% 71% XC 553 2% 59% 2.55 4.00 3.48 6-24 5-20 4.3-17 3.8-15 M 266 22% 90% C 367 8% 86% VC 467 4% 74% XC 539 2% 61% 50% 2.71 4.50 3.91 6.5-26 5.5-22 4.8-19 4-16 M 260 23% 90% C 356 9% 87% VC 454 5% 75% XC 526 3% 63% 2.85 5.00 4.35 6.8-27 5.8-23 5-20 4.3-17 M 254 25% 90% C 347 9% 88% VC 443 5% 77% XC 516 3% 64% 2.99 5.50 4.78 7.3-29 6-24 5.3-21 4.5-18 M 250 26% 90% C 331 10% 90% VC 425 6% 79% XC 498 3% 67% 478	-05	1.43 1.53 1.72 1.88 2.03 2.17 2.30 2.43 2.54 2.66 Flow L/min 1.69	1.75 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 Boom BAR 1.75	1.59 1.81 2.26 2.72 3.17 3.62 4.08 4.53 4.98 5.43 Tip BAR 1.52	4.3-17 4.5-18 5.3-21 5.8-23 6-24 6.5-26 7-28 7.3-29 7.8-31 8-32 Sprayer 125L/Ha 4-16	3.5-14 3.8-15 4-16 4.5-18 4.8-19 5.3-21 5.5-22 5.8-23 6-24 6.5-26 Speed (L/Ha 150L/Ha 3.3-13	2.8-11 3-12 3.5-14 3.8-15 4-16 4.3-17 4.5-18 4.8-19 5-20 5.3-21 on 50cm spi 175L/Ha 3-12	2.5-9.8 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.3-17 4.5-18 acing) @ 200L/Ha 2.5-10	M M M M M F F Class	286 276 261 249 240 232 225 219 214 209 30-06 VMD 316	11% 13% 15% 20% 21% 23% 24% 26% 27% 28% #402 <141 13%	95% 95% 95% 95% 95% 95% 95% 95% 95% 70-06 <600 92%	C C C C C C M SR8	375 351 331 313 298 284 272 260 0-06 VMD	8% 10% 11% 12% 14% 15% 15% 16% #4020 <141	84% 85% 87% 88% 89% 90% 91% 88-06 <600	VC VC VC C C C	467 448 432 418 407 396 387 80-06	3% 4% 5% 5% 6% 6% 7% 7% #402	70% 73% 76% 78% 79% 81% 82% 83% 90-06	XC XC XC XC XC XC VC VC	540 522 506 493 482 471 462 30-06	2% 3% 3% 4% 4% 4% 4%	62% 65% 67% 70% 71% 73% 74% 80-06
Nozzles 2.39 3.50 2.61 5.3-21 4.5-18 3.8-15 3.3-13 C 283 19% 91% C 380 7% 85% XC 481 4% 71% XC 553 2% 59% 59% 2.55 4.00 3.48 6-24 5-20 4.3-17 3.8-15 M 266 22% 90% C 367 8% 86% XC 481 4% 71% XC 553 2% 59% 2.55 4.00 3.48 6-24 5-20 4.3-17 3.8-15 M 266 22% 90% C 367 8% 86% VC 467 4% 74% XC 539 2% 61% 50% 2.71 4.50 3.91 6.5-26 5.5-22 4.8-19 4-16 M 260 23% 90% C 356 9% 87% VC 454 5% 75% XC 526 3% 63% 2.85 5.00 4.35 6.8-27 5.8-23 5-20 4.3-17 M 254 25% 90% C 347 9% 88% VC 443 5% 77% XC 516 3% 64% 2.99 5.50 4.78 7.3-29 6-24 5.3-21 4.5-18 M 250 26% 90% C 331 10% 90% VC 425 6% 79% XC 498 3% 67% 478	-05 Nozzles	1.43 1.53 1.72 1.88 2.03 2.17 2.30 2.43 2.54 2.66 Flow L/min 1.69	1.75 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 Boom BAR 1.75 2.00	1.59 1.81 2.26 2.72 3.17 3.62 4.08 4.53 4.98 5.43 Tip BAR 1.52 1.74	4.3-17 4.5-18 5.3-21 5.8-23 6-24 6.5-26 7-28 7.3-29 7.8-31 8-32 Sprayer 125L/Ha 4-16 4.3-17	3.5-14 3.8-15 4-16 4.5-18 4.8-19 5.3-21 5.5-22 5.8-23 6-24 6.5-26 Speed (L/Ha 150L/Ha 3.3-13	2.8-11 3-12 3.5-14 3.8-15 4-16 4.3-17 4.5-18 4.8-19 5-20 5.3-21 on 50cm spi 175L/Ha 3-12 3-12	2.5-9.8 2.8-11 3.3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.3-17 4.5-18 acing) @ 200L/Ha 2.5-10 2.8-11	M M M M M F F Class	286 276 261 249 240 232 225 219 214 209 80-06 VMD 316 307	11% 13% 15% 20% 21% 23% 24% 26% 27% 28% #402 <141 13% 15%	95% 95% 95% 95% 95% 95% 95% 95% 95% 95%	C C C C C M SRE	375 351 331 313 298 284 272 260 00-06 VMD	8% 10% 11% 12% 14% 15% 15% 16% #4028 <141	84% 85% 87% 88% 89% 90% 91% 88-06 <600	VC VC VC C C C MR8	467 448 432 418 407 396 387 30-06 VMD	3% 4% 5% 5% 6% 7% 7% #402 <141	70% 73% 76% 78% 79% 81% 82% 83% 90-06	XC XC XC XC XC XC VC VC VC DR8	540 522 506 493 482 471 462 30-06 VMD	2% 3% 3% 4% 4% 4% 44% 4141	62% 65% 67% 70% 71% 73% 74% 80-06 <600
Nozzles 2.39 3.50 3.04 5.8-23 4.8-19 4-16 3.5-14 C 274 21% 91% C 380 7% 85% XC 481 4% 77% XC 553 2% 59% 59% 2.55 4.00 3.48 6-24 5-20 4.3-17 3.8-15 M 266 22% 90% C 367 8% 86% VC 467 4% 77% XC 553 2% 61% 2.8-17 4.50 3.91 6.5-26 5.5-22 4.8-19 4-16 M 260 23% 90% C 356 9% 87% VC 443 5% 77% XC 516 3% 64% 2.8-18 3.12 6.00 5.22 7.5-30 6.3-25 5.3-21 4.5-18 M 250 26% 90% C 338 10% 89% VC 443 5% 77% XC 516 3% 68% 3.12 6.00 5.22 7.5-30 6.3-25 5.3-21 4.5-18 M 250 26% 90% C 338 10% 89% VC 443 5% 77% XC 516 3% 68% 3.12 6.00 5.22 7.5-30 6.3-25 5.3-21 4.5-18 M 250 26% 90% C 338 10% 89% VC 443 5% 77% XC 506 3% 66% 66% 3.12 6.00 5.22 7.5-30 6.3-25 5.3-21 4.8-19 M 245 27% 90% C 338 10% 89% VC 443 5% 77% XC 506 3% 66% 66% 3.12 6.00 5.22 7.5-30 6.3-25 5.3-21 4.8-19 M 245 27% 90% C 338 10% 89% VC 443 5% 77% XC 506 3% 66% 66% 400 488	-05 Nozzles	1.43 1.53 1.72 1.88 2.03 2.17 2.30 2.43 2.56 Flow L/min 1.69 1.80 2.02	1.75 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 Boom BAR 1.75 2.00 2.50	1.59 1.81 2.26 2.72 3.17 3.62 4.08 4.53 4.98 5.43 Tip BAR 1.52 1.74 2.17	4.3-17 4.5-18 5.3-21 5.8-23 6-24 6.5-26 7-28 7.3-29 7.8-31 8-32 Sprayer 125L/Ha 4-16 4.3-17 4.8-19	3.5-14 3.8-15 4-16 4.5-18 4.8-19 5.3-21 5.5-22 5.8-23 6-24 6.5-26 Speed (L/Ha 150L/Ha 3.3-13 3.5-14 4-16	2.8-11 3-12 3.5-14 3.8-15 4-16 4.3-17 4.5-18 4.8-19 5-20 5.3-21 on 50cm spi 175L/Ha 3-12 3-12 3.5-14	2.5-9.8 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18 acing) @ 200L/Ha 2.5-10 2.8-11 3-12	M M M M F F ER8 Class C C C	286 276 261 249 240 232 225 219 214 209 80-06 VMD 316 307 293	11% 13% 15% 17% 20% 21% 23% 24% 26% 27% 28% #402 <141 13% 15% 17%	95% 95% 95% 95% 95% 95% 95% 95% 95% 70-06 <600 92% 91%	C C C C C M SR8	375 351 331 313 298 284 272 260 0-06 VMD 439 414	8% 10% 11% 12% 14% 15% 16% #4020 <141 4% 5%	84% 85% 87% 88% 89% 90% 91% 88-06 <600 78% 81%	VC VC VC C C C C MR8 Class	467 448 432 418 407 396 387 30-06 VMD	3% 4% 5% 5% 6% 6% 7% 7% #402 <141	70% 73% 76% 78% 79% 81% 82% 83% 90-06 <600	XC X	540 522 506 493 482 471 462 30-06 VMD	2% 3% 3% 4% 4% 4% 41028 <141	62% 65% 67% 70% 71% 73% 74% 80-06 <600
2.55 4.00 3.48 6-24 5-20 4.3-17 3.8-15 M 266 22% 90% C 367 8% 86% VC 467 4% 74% XC 539 2% 61% 2.71 4.50 3.91 6.5-26 5.5-22 4.8-19 4-16 M 260 23% 90% C 366 9% 87% VC 454 5% 75% XC 526 3% 63% 2.98 5.50 4.78 7.3-29 6-24 5.3-21 4.5-18 M 250 26% 90% C 338 10% 89% VC 443 5% 77% XC 516 3% 66% 3.12 6.00 5.22 7.5-30 6.3-25 5.3-21 4.8-19 M 245 27% 90% C 338 10% 89% VC 443 5% 77% XC 516 3% 66% 3.12 6.00 5.22 7.5-30 6.3-25 5.3-21 4.8-19 M 245 27% 90% C 331 10% 90% VC 425 6% 79% XC 498 3% 67% VC 498 40288-08 VC 4	-05 Nozzles	1.43 1.53 1.72 1.88 2.03 2.17 2.30 2.43 2.54 2.66 Flow L/min 1.69 1.80 2.02	1.75 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 Boom BAR 1.75 2.00 2.50	1.59 1.81 2.26 2.72 3.17 3.62 4.08 4.53 4.98 5.43 Tip BAR 1.52 1.74 2.17 2.61	4.3-17 4.5-18 5.3-21 5.8-23 6-24 6.5-26 7-28 7.3-29 7.8-31 8-32 Sprayer 125L/Ha 4-16 4.3-17 4.8-19 5.3-21	3.5-14 3.8-15 4-16 4.5-18 4.8-19 5.3-21 5.5-22 5.8-23 6-24 6.5-26 Speed (L/Ha 150L/Ha 3.3-13 3.5-14 4-16	2.8-11 3-12 3.5-14 3.8-15 4-16 4.3-17 4.5-18 4.8-19 5-20 5.3-21 on 50cm spi 1751/Ha 3-12 3-12 3.5-14 3.8-15	2.5-9.8 2.8-11 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.3-17 4.3-17 4.5-18 2.5-10 2.8-11 3-12 3.3-13	M M M M F F F ER8 C C C C C C	286 276 261 249 240 232 225 219 214 209 30-06 VMD 316 307 293 283	11% 13% 15% 17% 20% 21% 23% 24% 26% 27% 28% #402 <141 13% 15% 17% 19%	95% 95% 95% 95% 95% 95% 95% 95%	C C C C C C M SR8	375 351 331 313 298 284 272 260 0-06 VMD 439 414 395	8% 10% 11% 12% 14% 15% 16% #4020 <141 4% 5% 6%	84% 85% 87% 88% 89% 90% 91% 88-06 <600 78% 81%	VC VC VC C C C C MR8 Classs	467 448 432 418 407 396 387 30-06 VMD 520 499	3% 4% 5% 5% 6% 6% 7% 7% #402 <141	70% 73% 76% 78% 79% 81% 82% 83% 90-06 <600	XC X	540 522 506 493 482 471 462 30-06 VMD 591 570	2% 3% 3% 4% 4% 4% 41028 <141 2% 2%	62% 65% 67% 70% 71% 73% 74% 80-06 <600 52% 56%
2.71 4.50 3.91 6.5-26 5.5-22 4.8-19 4-16 M 260 23% 90% C 356 9% 87% VC 454 5% 75% XC 526 3% 63% 2.85 5.00 4.78 7.3-29 6.24 5.3-21 4.5-18 M 250 26% 90% C 338 10% 89% VC 443 5% 77% XC 516 3% 64% 2.99 5.50 4.78 7.3-29 6.24 5.3-21 4.5-18 M 250 26% 90% C 331 10% 90% VC 425 6% 77% XC 498 3% 67% 3.12 6.00 5.22 7.5-30 6.3-25 5.3-21 4.8-19 M 245 27% 90% C 331 10% 90% VC 425 6% 79% XC 498 3% 67% 67% 4.5-18 3.5-14 2.8-11 2.3-9.2 C 349 14% 88% VC 433 4.3-17 3.3-13 4.3-17 3.3-13 2.8-11 M 302 29% 91% XC 448 9% 66% 4.8-19 4.6 3.3-13 M 272 22% 93% XC 448 9% 66% 4.8-19 4.6 3.3-13 M 272 22% 93% XC 448 9% 66% 4.8-19 4.6 3.3-13 M 272 22% 93% XC 448 9% 66% 4.8-19 4.9-19 4.16 3.3-13 M 272 22% 93% XC 448 9% 66% 4.8-19 4.9-16 3.3-13 M 272 22% 93% XC 448 9% 66% 4.8-19 4.9-16 3.3-13 M 272 22% 93% XC 448 9% 66% 4.8-19 4.9-16 3.3-13 M 272 22% 93% XC 448 9% 66% 4.8-19 4.9-16 3.3-13 M 272 22% 93% XC 448 9% 66% 4.8-19 4.9-16 3.3-13 M 272 22% 93% XC 448 9% 66% 4.8-19 4.9-16 3.3-13 M 272 22% 93% XC 448 9% 66% 4.8-19 4.9-16 3.3-13 M 272 22% 93% XC 448 9% 66% 4.8-19 4.9-16 3.3-13 M 272 22% 93% XC 448 9% 66% 4.8-19 4.9-16 3.3-13 M 272 22% 93% XC 448 9% 66% 4.8-19 4.9-16 3.3-13 M 272 22% 93% XC 448 9% 66% 4.8-19 4.9-16 3.3-13 M 272 22% 93% XC 448 9% 66% 4.8-19 4.9-16 3.3-13 M 272 22% 93% XC 448 9% 66% 4.8-19 4.9-16 3.3-12 4.9-16 3.3-13 4.9-16 3.3-13 4.9-16 3.3-13 4.9-16 3.3-13 4.9-16 3.3-13 4.9-16 3.3-13 4.9-16 3.3-13 4.9-16 3.3-13	-05 Nozzles	1.43 1.53 1.72 1.88 2.03 2.17 2.30 2.43 2.54 2.66 Flow L/min 1.69 1.80 2.02 2.21 2.39	1.75 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 Boom BAR 1.75 2.00 2.50	1.59 1.81 2.26 2.72 3.17 3.62 4.08 4.53 4.98 5.43 Tip BAR 1.52 1.74 2.17 2.61	4.3-17 4.5-18 5.3-21 5.8-23 6-24 6.5-26 7-28 7.3-29 7.8-31 8-32 Sprayer 125L/Ha 4-16 4.3-17 4.8-19 5.3-21	3.5-14 3.8-15 4-16 4.5-18 4.8-19 5.3-21 5.5-22 5.8-23 6-24 6.5-26 Speed (L/Ha 150L/Ha 3.3-13 3.5-14 4-16	2.8-11 3-12 3.5-14 3.8-15 4-16 4.3-17 4.5-18 4.8-19 5-20 5.3-21 on 50cm spi 1751/Ha 3-12 3-12 3.5-14 3.8-15	2.5-9.8 2.8-11 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.3-17 4.3-17 4.5-18 2.5-10 2.8-11 3-12 3.3-13	M M M M F F F ER8 C C C C C C	286 276 261 249 240 232 225 219 214 209 30-06 VMD 316 307 293 283	11% 13% 15% 17% 20% 21% 23% 24% 26% 27% 28% #402 <141 13% 15% 17% 19% 21%	95% 95% 95% 95% 95% 95% 95% 95%	C C C C C M SR8 Class VC VC C C C	375 351 331 313 298 284 272 260 0-06 VMD 439 414 395	8% 10% 11% 12% 14% 15% 16% #4020 <141 4% 5% 6%	84% 85% 87% 88% 89% 90% 91% 88-06 <600 78% 81%	VC VC VC C C C C MR8 Classs	467 448 432 418 407 396 387 30-06 VMD 520 499	3% 4% 5% 5% 6% 6% 7% 7% #402 <141	70% 73% 76% 78% 79% 81% 82% 83% 90-06 <600	XC X	540 522 506 493 482 471 462 30-06 VMD 591 570	2% 3% 3% 4% 4% 4% 41028 <141 2% 2%	62% 65% 67% 70% 71% 73% 74% 80-06 <600 52% 56%
2.85 5.00 4.35 6.8-27 5.8-23 5-20 4.3-17 M 254 25% 90% C 347 9% 88% VC 443 5% 77% XC 516 3% 64% 2.99 5.50 4.78 7.3-29 6-24 5.3-21 4.5-18 M 250 26% 90% C 338 10% 89% VC 433 5% 78% XC 506 3% 66% 31.2 6.00 5.22 7.5-30 6.3-25 5.3-21 4.8-19 M 245 27% 90% C 331 10% 90% VC 425 6% 79% XC 498 3% 66% 2.94 1.0	-05 Nozzles	1.43 1.53 1.72 1.88 2.03 2.17 2.30 2.43 2.54 2.66 Flow L/min 1.69 1.80 2.02 2.21 2.39	1.75 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 Boom BAR 1.75 2.00 2.50 3.00	1.59 1.81 2.26 2.72 3.17 3.62 4.08 4.53 4.98 5.43 Tip BAR 1.52 1.74 2.17 2.61 3.04	4.3-17 4.5-18 5.3-21 5.8-23 6-24 6.5-26 7-28 7.3-29 7.8-31 8-32 Sprayer 4-16 4.3-17 4.8-19 5.3-21 5.8-23	3.5-14 3.8-15 4-16 4.5-18 4.8-19 5.3-21 5.5-22 5.8-23 6-24 6.5-26 Speed (L/Ha 150L/Ha 3.3-13 3.5-14 4-16 4.5-18 4.8-19	2.8-11 3-12 3.5-14 3.8-15 4-16 4.3-17 4.5-18 4.8-19 5-20 5.3-21 on 50cm spi 175L/Ha 3-12 3-12 3.5-14 3.8-15 4-16	2.5-9.8 2.8-11 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.3-17 4.3-17 4.5-18 200L/Ha 2.5-10 2.8-11 3-12 3.3-13 3.5-14	M M M M F F ER8	286 276 261 249 240 232 225 219 214 209 80-06 VMD 316 307 293 283 274	11% 13% 15% 17% 20% 21% 23% 24% 26% 27% 28% #402 <141 13% 15% 17% 19% 21%	95% 95% 95% 95% 95% 95% 95% 95%	C C C C C M SR8 Class VC VC C C C	375 351 331 313 298 284 272 260 60-06 VMD 439 414 395 380	8% 10% 11% 12% 14% 15% 16% #4023 <141 4% 5% 6% 7%	84% 85% 87% 88% 89% 90% 91% 88-06 <600 78% 81% 83% 85%	VC VC VC C C C C XC XC XC	467 448 432 418 407 396 387 30-06 VMD 520 499 481	3% 4% 5% 5% 6% 6% 7% 7% <141 3% 3% 4%	70% 73% 76% 78% 79% 81% 82% 83% 83% 600 65% 69% 71%	XC X	540 522 506 493 482 471 462 30-06 VMD 591 570 553	2% 3% 3% 3% 4% 4% 4% **4028 <141 2% 2% 2%	62% 65% 67% 70% 71% 73% 74% 80-06 <600 52% 56% 59%
2.99 5.50 4.78 7.3-29 6-24 5.3-21 4.5-18 M 250 26% 90% C 338 10% 89% VC 433 5% 78% XC 506 3% 66% 66% 3.12 6.00 5.22 7.5-30 6.3-25 5.3-21 4.8-19 M 245 27% 90% C 331 10% 90% VC 425 6% 79% XC 498 3% 67% 78% XC 506 3% 66% 78% XC 498 3% 67% 78% XC 498 3% 40280-08 402	-05 Nozzles	1.43 1.53 1.72 1.82 2.03 2.17 2.30 2.43 2.56 Flow L/min 1.69 1.80 2.02 2.21 2.39	1.75 2.00 2.50 3.00 3.50 4.00 5.50 6.00 Boom BAR 1.75 2.00 3.50 4.00	1.59 1.81 2.26 2.72 3.17 3.62 4.08 4.53 4.98 5.43 Tip BAR 1.52 1.74 2.17 2.61 3.04 3.48	4.3-17 4.5-18 5.3-21 5.8-23 6-24 6.5-26 6.5-26 7-28 7.3-29 7.8-31 8-32 Sprayer 1251/Ha 4-16 4.3-17 4.8-19 5.3-21 5.8-23	3.5-14 3.8-15 4-16 4.5-18 4.8-19 5.3-21 5.5-22 5.8-23 6-24 6.5-26 Speed (L/Ha 150L/Ha 3.3-13 3.5-14 4-16 4.5-18 4.8-19 5-20	2.8-11 3-12 3.5-14 3.8-15 4-16 4.3-17 4.5-18 4.8-19 5-20 5.3-21 on 50cm sp: 175L/Ha 3-12 3-12 3.5-14 3.8-15 4-16 4.3-17	2.5-9.8 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.3-17 4.5-18 acing) @ 200L/Ha 2.5-10 2.8-11 3-12 3.3-13 3.5-14 3.8-15	M M M M M M F F ER8	286 276 261 249 240 232 225 219 214 209 80-06 VMD 316 307 293 283 274 266	11% 13% 15% 17% 20% 21% 23% 24% 26% 27% 28% #402 <141 13% 15% 17% 19% 21% 22%	95% 95% 95% 95% 95% 95% 95% 95% 95% 95%	C C C C C C C C C C C C C C C C C C C	375 351 331 313 298 284 272 260 60-06 VMD 439 414 395 380 367	8% 10% 11% 12% 14% 15% 16% #4023 <141 4% 5% 6% 7% 8%	84% 85% 87% 88% 89% 90% 91% 88-06 <600 78% 81% 83% 85%	VC VC VC C C C C MR8 Class XC XC XC VC	467 448 432 418 407 396 387 30-06 VMD 520 499 481 467	3% 4% 5% 5% 6% 6% 7% 7% #402 <141 3% 3% 4%	70% 73% 76% 78% 81% 82% 83% 90-06 <600 65% 69% 71% 74%	XC X	540 522 506 493 482 471 462 30-06 VMD 591 570 553 539	2% 3% 3% 4% 4% 4% **4028 <141 2% 2% 2% 2%	62% 65% 67% 70% 71% 73% 74% 80-06 <600 52% 56% 59% 61%
Sprayer Spra	-05 Nozzles	1.43 1.53 1.72 1.88 2.03 2.17 2.30 2.43 2.54 2.66 Flow L/min 1.69 1.80 2.02 2.21 2.39 2.55 2.71	1.75 2.00 2.50 3.00 3.50 4.00 5.00 5.50 6.00 Boom BAR 1.75 2.00 2.50 3.50 4.00	1.59 1.81 2.26 2.72 3.17 3.62 4.08 4.53 4.98 5.43 Tip BAR 1.52 1.74 2.17 2.61 3.04 3.48 3.91	4.3-17 4.5-18 5.3-21 5.8-23 6-24 6.5-26 7-28 7.3-29 7.8-31 8-32 Sprayer 125L/Ha 4-16 4.3-17 4.8-19 5.3-21 5.8-23 6-24	3.5-14 3.8-15 4-16 4.5-18 4.8-19 5.3-21 5.5-22 5.8-23 6-24 6.5-26 Speed (L/Ha 3.3-13 3.5-14 4-16 4.5-18 4.8-19 5-20 5.5-22	2.8-11 3-12 3.5-14 3.8-15 4-16 4.3-17 4.5-18 4.8-19 5-20 5-3-21 on 50cm spi 175L/Ha 3-12 3-5-14 3.8-15 4-16 4.3-17 4.8-19	2.5-9.8 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.3-17 4.5-18 acing) @ 200L/Ha 2.5-10 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16	M M M M M M M M M M M M M M M M M M M	286 276 261 249 240 232 225 219 214 209 30-06 VMD 316 307 293 283 274 266 260	11% 13% 15% 17% 20% 21% 23% 26% 27% 28% #402 <141 13% 15% 17% 19% 21% 22% 23%	95% 95% 95% 95% 95% 95% 95% 95% 95% 95%	C C C C C C C C C C C C C C C C C C C	375 351 331 313 298 284 272 260 60-06 VMD 439 414 395 380 367 356	8% 10% 11% 12% 14% 15% 16% #4020 <141 4% 5% 6% 7% 8% 9%	84% 85% 87% 88% 89% 90% 91% 88-06 <600 78% 81% 83% 85% 86% 87%	VC VC VC C C C C MR8 Class XC XC XC VC VC	467 448 432 418 407 396 387 30-06 VMD 520 499 481 467 454	3% 4% 5% 6% 6% 7% 7% #402 <141 3% 4% 4%	70% 73% 76% 78% 81% 82% 83% 90-06 <65% 69% 71% 74% 75%	XC X	540 522 506 493 482 471 462 30-06 VMD 591 570 553 539 526	2% 3% 3% 4% 4% 4% #4028 <141 2% 2% 2% 2% 3%	62% 65% 67% 70% 71% 73% 74% 30-06 <600 52% 56% 59% 61% 63%
Flow Boom Tip Sprayer Speed (L/Ha on 50cm spacing) @ ER80-08 #40270-08 SR80-08 #40288-08 MR80-08 #40290-08 DR80-08 #40280-08 MR80-08 #40290-08 DR80-08 #40280-08 MR80-08 #40290-08 DR80-08 #40280-08 MR80-08 #40290-08 DR80-08 #40280-08 MR80-08 MR80-08 #40280-08 MR80-08 MR80-08 #40280-08 #40280-08 MR80-08 #4028	-05 Nozzles	1.43 1.53 1.72 1.88 2.03 2.17 2.30 2.43 2.54 2.66 Flow L/min 1.69 2.02 2.21 2.39 2.55 2.71 2.39	1.75 2.00 2.50 3.00 3.50 4.00 4.50 5.50 6.00 Boom BAR 1.75 2.00 2.50 3.00 4.50 5.50	1.59 1.81 2.26 2.72 3.17 3.62 4.08 4.53 4.98 5.43 Tip BAR 1.52 1.74 2.17 2.61 3.04 3.48 3.91 4.35	4.3-17 4.5-18 5.3-21 5.8-23 6-24 6.5-26 7-28 7.3-29 7.8-31 8-32 Sprayer 125L/Ha 4-16 4.3-17 4.8-19 5.3-21 5.8-23 6-24 6.5-26	3.5-14 3.8-15 4-16 4.5-18 4.8-19 5.3-21 5.5-22 5.8-23 6-24 6.5-26 Speed (L/Ha 150L/Ha 3.3-13 3.5-14 4-16 4.5-18 4.8-19 5.5-20 5.5-22 5.8-23	2.8-11 3-12 3.5-14 3.8-15 4-16 4.3-17 4.5-18 4.8-19 5-20 5.3-21 on 50cm spi 175L/Ha 3-12 3-12 3-5-14 3.8-15 4-16 4.3-17 4.8-19	2.5-9.8 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18 acing) @ 200L/Ha 2.5-10 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17	M M M M M M M M M M M M M M M M M M M	286 276 261 249 240 232 225 219 214 209 80-06 VMD 316 307 293 283 274 266 260 254	11% 13% 15% 20% 21% 23% 26% 27% 28% #402 <141 13% 15% 17% 22% 22% 23% 22% 23% 25%	95% 95% 95% 95% 95% 95% 95% 95%	C C C C C C C C C C C C C C C C C C C	375 351 331 298 284 272 260 60-06 VMD 439 414 395 380 367 356 347	8% 10% 11% 12% 14% 15% 16% #4020 <141 4% 5% 6% 7% 8% 9%	84% 85% 87% 88% 89% 90% 91% 88-06 <600 78% 81% 83% 85% 86% 87%	VC VC VC C C C C C XC VC XC XC VC VC VC	467 448 432 418 407 396 387 30-06 VMD 520 499 481 467 454 443	3% 4% 5% 6% 6% 7% 4402 <141 3% 4% 5% 5%	70% 73% 76% 78% 79% 81% 82% 83% 90-06 <600 65% 69% 71% 74% 75% 77%	XC X	540 522 506 493 482 471 462 30-06 VMD 591 570 553 539 526 516	2% 3% 3% 4% 4% 4% *4028 <141 2% 2% 2% 2% 2% 3% 3%	62% 65% 67% 70% 71% 73% 74% 80-06 <600 52% 56% 59% 61% 63% 64%
L/min BAR BAR 150L/Ha 200L/Ha 250L/Ha 300L/Ha Class VMD <141 <600 Class VMD <141 <140 <140 Class VMD <141 <140 Class VMD <14	-05 Nozzles	1.43 1.53 1.72 1.88 2.03 2.17 2.30 2.43 2.54 2.66 Flow L/min 1.69 1.80 2.02 2.21 2.39 2.55 2.71 2.85	1.75 2.00 2.50 3.00 4.00 4.50 5.00 6.00 Boom BAR 1.75 2.00 3.50 4.00 4.50 5.50	1.59 1.81 2.26 2.72 3.17 3.62 4.08 4.53 4.98 5.43 Tip BAR 1.52 1.74 2.17 2.61 3.04 3.48 3.91 4.35 4.78	4.3-17 4.5-18 5.3-21 5.8-23 6-24 6.5-26 7-28 7.3-29 7.8-31 8-32 Sprayer 125L/Ha 4-16 4.3-17 4.8-19 5.3-21 5.8-23 6-24 6.5-26	3.5-14 3.8-15 4-16 4.5-18 4.8-19 5.3-21 5.5-22 5.8-23 6-24 6.5-26 Speed (L/Ha 3.3-13 3.5-14 4-16 4.5-18 4.8-19 5-20 5.5-22 5.8-23 6-24	2.8-11 3-12 3.5-14 3.8-15 4-16 4.3-17 4.5-18 4.8-19 5-20 5.3-21 on 50cm spi 175L/Ha 3-12 3-12 3-5-14 3.8-15 4-16 4.3-17 4.8-19 5-20 5.3-21	2.5-9.8 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18 acing) @ 2001/Ha 2.5-10 2.8-11 3-12 3.3-13 3.5-14 4.3-17 4.5-18	M M M M M M M M M M M M M M M M M M M	286 276 261 249 240 232 225 219 214 209 30-06 VMD 316 307 293 283 274 266 260 254	11% 13% 15% 17% 20% 21% 24% 26% 27% 28% 4402 241 13% 15% 17% 19% 21% 22% 22% 25% 25%	95% 95% 95% 95% 95% 95% 95% 95% 70-06 <600 91% 91% 91% 91% 90% 90%	C C C C C C C C C C C C C C C C C C C	375 351 331 313 298 284 272 260 30-06 VMD 439 414 395 380 367 356 347 338	8% 10% 11% 12% 14% 15% 16% #4020 <141 4% 5% 6% 7% 8% 9% 9% 10%	84% 85% 87% 88% 89% 90% 91% 88-06 <600 78% 81% 85% 86% 87% 88%	VC VC VC C C C C C C XC XC XC VC VC VC VC	467 448 432 418 407 396 387 30-06 VMD 520 499 481 467 454 443 433	3% 4% 5% 6% 6% 7% #402 <141 3% 4% 4% 5% 5%	70% 73% 76% 78% 79% 81% 82% 83% 6600 65% 69% 71% 74% 77% 78%	XC X	540 522 506 493 482 471 462 30-06 VMD 591 570 553 539 526 516 506	2% 3% 3% 4% 4% 44028 <141 2% 2% 2% 2% 3% 3% 3%	62% 65% 67% 70% 71% 73% 74% 80-06 <600 52% 56% 61% 63% 64% 66%
2.14 1.75 1.38 4.3-17 3.3-13 2.5-10 2.2-8.6 VC 366 12% 86% UC 529 6% 51%	-05 Nozzles	1.43 1.53 1.72 1.88 2.03 2.17 2.30 2.43 2.54 2.66 Flow L/min 1.69 1.80 2.02 2.21 2.39 2.55 2.71 2.85 2.99	1.75 2.00 2.50 3.00 4.00 4.50 5.00 6.00 Boom BAR 1.75 2.00 3.50 4.00 4.50 5.50 6.00	1.59 1.81 2.26 2.72 3.17 3.62 4.08 4.53 4.98 5.43 Tip BAR 1.52 1.74 2.17 2.61 3.04 3.48 3.91 4.35 4.78 5.22	4.3-17 4.5-18 5.3-21 5.8-23 6-24 6.5-26 7-28 7.3-29 7.8-31 8-32 Sprayer 125L/Ha 4-16 4.3-17 4.8-19 5.3-21 5.8-23 6-24 6.5-26 6.8-27 7.3-29	3.5-14 3.8-15 4-16 4.5-18 4.8-19 5.3-21 5.5-22 5.8-23 6-24 6.5-26 Speed (L/Ha 3.3-13 3.5-14 4-16 4.5-18 4.8-19 5-20 5.5-22 5.8-23 6-24 6.3-25	2.8-11 3-12 3.5-14 3.8-15 4-16 4.3-17 4.5-18 4.8-19 5-20 5.3-21 on 50cm sp: 175L/Ha 3-12 3-12 3.5-14 3.8-15 4-16 4.3-17 4.8-19 5-20 5.3-21 5.3-21	2.5-9.8 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18 acing) @ 200L/Ha 2.5-10 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18	C M M M M M M M M M M M M M M M M M M M	286 276 261 249 240 232 225 219 214 209 80-06 307 293 283 274 266 254 250 245 240 240 240 240 240 240 240 240	11% 13% 15% 20% 21% 23% 24% 26% 28% #402 <141 13% 15% 19% 21% 22% 23% 22% 23% 25% 27%	95% 95% 95% 95% 95% 95% 95% 95% 95% 91% 91% 91% 91% 90% 90% 90%	C C C C C C C C C C C C C C C C C C C	375 351 331 313 298 284 272 260 0-06 VMD 439 414 395 380 367 356 347 338 331	8% 10% 11% 12% 14% 15% 16% #402 <141 4% 5% 6% 7% 8% 9% 9% 10% 10%	84% 85% 87% 88% 89% 90% 91% 88-06 <600 78% 81% 85% 86% 87% 88% 90%	VC VC VC C C C C C C C C C C VC VC VC VC	467 448 432 418 407 396 387 30-06 VMD 520 499 481 467 454 443 433 425	3% 4% 5% 5% 6% 7% #402 <141 3% 4% 4% 5% 5% 6%	70% 73% 76% 78% 79% 81% 82% 83% 90-06 <600 71% 75% 77% 77% 79% 79%	XC XC XC XC XC XC VC VC VC DR8 Classs XC	540 522 506 493 482 471 462 30-06 VMD 591 570 553 539 526 516 506 498	2% 3% 3% 4% 4% 44028 <141 2% 2% 2% 3% 3% 3% 3%	62% 65% 67% 70% 71% 73% 74% 80-06 <600 56% 56% 61% 64% 66% 67%
2.29 2.00 1.58 4.5-18 3.5-14 2.8-11 2.3-9.2 C 349 14% 88% UC 529 6% 51%	-05 Nozzles	1.43 1.53 1.72 1.88 2.03 2.17 2.30 2.43 2.54 2.66 Flow L/min 1.69 1.80 2.02 2.21 2.39 2.55 2.71 2.85 2.90 3.12 Flow	1.75 2.00 2.50 3.00 3.50 4.00 4.50 5.50 6.00 Boom BAR 1.75 2.00 2.50 3.00 3.00 3.50 6.00 Boom BAR 1.75 2.00 4.50 6.00 8.50 8.50 8.50 8.50 8.50 8.50 8.50 8	1.59 1.81 2.26 2.72 3.17 3.62 4.08 4.53 4.98 5.43 Tip BAR 1.52 1.74 2.17 2.61 3.04 3.48 3.91 4.35 4.78 5.22 Tip	4.3-17 4.5-18 5.3-21 5.8-23 6-24 6.5-26 7-28 7.3-29 7.8-31 8-32 Sprayer 125L/Ha 4-16 4.3-17 5.3-21 5.8-23 6-24 6.5-26 6.8-27 7.3-29 7.5-30 Sprayer	3.5-14 3.8-15 4-16 4.5-18 4.8-19 5.3-21 5.5-22 5.8-23 6-24 6.5-26 Speed (L/Ha 3.3-13 3.5-14 4-16 4.5-18 4.8-19 5-20 5.5-22 5.8-23 6-24 6.3-25 Speed (L/Ha	2.8-11 3-12 3.5-14 3.8-15 4-16 4.3-17 4.5-18 4.8-19 5-20 5.3-21 on 50cm spi 175L/Ha 3-12 3.5-14 3.8-15 4-16 4.3-17 4.8-19 5-20 5.3-21 on 50cm spi	2.5-9.8 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18 acing) @ 200L/Ha 2.5-10 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18 4.8-19 acing) @	C M M M M M M M M M M M M M M M M M M M	286 276 261 249 249 225 219 219 30-06 VMD 316 307 293 274 266 260 254 250 245 250 260 274 260 274 260 274 275 275 275 275 275 275 275 275	11% 13% 15% 17% 20% 21% 23% 24% 26% 27% #402 <141 13% 15% 21% 22% 23% 25% 26% #402 #402	95% 95% 95% 95% 95% 95% 95% 95% 95% <600 92% 91% 91% 90% 90% 90%	C C C C C C C C C C C C C C C C C C C	375 351 331 313 298 260 0-0-6 VMD 439 414 395 380 367 356 337 338 331 0-0-8	8% 10% 11% 12% 14% 15% 16% #4028 <141 4% 5% 6% 7% 8% 9% 10% 10% #4028	84% 85% 88% 88% 89% 90% 91% 88-06 <600 78% 81% 85% 86% 87% 88% 89% 90% 88-08	VC VC VC C C C C C MR88 Classs XC XC VC VC VC VC MR88	467 448 432 418 407 396 387 30-06 VMD 520 499 481 467 454 443 433 425 30-08	3% 4% 5% 5% 6% 6% 7% 7402 <141 3% 4% 5% 5% 6% 6%	70% 73% 76% 78% 79% 81% 82% 83% 90-06 <65% 65% 71% 74% 75% 77% 78% 99-08	XC XC XC XC XC XC VC VC DR8 Classs XC	540 522 506 493 482 471 462 30-06 VMD 591 570 553 539 526 516 506 498 30-08	2% 3% 3% 4% 4% 44% *44028 <141 2% 2% 2% 2% 3% 3% 3% 3% 44028	62% 65% 67% 70% 71% 73% 74% 30-06 <600 52% 56% 59% 61% 63% 64% 66% 67% 30-08
2.29 2.00 1.58 4.5-18 3.5-14 2.8-11 2.3-9.2 C 349 14% 88% UC 529 6% 51%	-05 Nozzles	1.43 1.53 1.72 1.88 2.03 2.17 2.30 2.43 2.54 2.66 Flow L/min 1.69 1.80 2.02 2.21 2.39 2.55 2.71 2.85 2.99 3.12 Flow L/min	1.75 2.00 2.50 3.00 3.50 4.00 4.50 5.00 6.00 800 800 1.75 2.00 4.50 4.50 4.50 4.50 5.50 6.00 4.50 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6	1.59 1.81 2.26 2.72 3.17 3.62 4.08 4.53 4.98 5.43 Tip BAR 1.52 1.74 2.17 2.61 3.04 3.48 3.91 4.35 4.78 5.22 Tip BAR	4.3-17 4.5-18 5.3-21 5.8-23 6-24 6.5-26 7-28 7.3-29 7.8-31 8-32 Sprayer 125L/Ha 4-16 4.3-17 4.8-19 5.3-21 5.8-23 6-24 6.5-26 6.5-26 6.8-27 7.3-29 7.5-30 Sprayer	3.5-14 3.8-15 4-16 4.5-18 4.8-19 5.3-21 5.5-22 5.8-23 6-24 6.5-26 Speed (L/Ha 3.3-13 3.5-14 4-16 4.5-18 4.8-19 5-20 5.5-22 5.8-23 6-24 6.3-25 Speed (L/Ha	2.8-11 3-12 3.5-14 3.8-15 4-16 4.3-17 4.5-18 4.8-19 5-20 5.3-21 on 50cm spi 175L/Ha 3-12 3-12 3-12 3-5-14 3.8-15 4-16 4.3-17 4.8-19 5-20 5.3-21 on 50cm spi 250L/Ha	2.5-9.8 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18 acing) @ 200L/Ha 2.5-10 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18 4.8-19 acing) @ 300L/Ha	C M M M M M M M M M M M M M M M M M M M	286 276 261 249 249 225 219 209 0-06 VMD 316 307 293 283 274 266 260 254 250 250 209 0-06 VMD	11% 13% 15% 20% 21% 23% 24% 24% 28% #402 <141 13% 15% 17% 29% 29% 20% 27% 28% 4402 <141 27% 27% 28% 27% 27% 27% 27% 27% 27% 27%	95% 95% 95% 95% 95% 95% 95% 95% 95% 90% 4<600 92% 91% 90% 90% 90% 90% 90% 4<600	C C C C C C C C C C C C C C C C C C C	375 351 331 313 298 260 0-0-6 VMD 439 414 395 380 367 356 337 338 331 0-0-8	8% 10% 11% 12% 14% 15% 16% #4028 <141 4% 5% 6% 7% 8% 9% 10% 10% #4028	84% 85% 88% 88% 89% 90% 91% 88-06 <600 78% 81% 85% 86% 87% 88% 89% 90% 88-08	VC VC VC C C C C C MR88 Classs XC XC VC VC VC VC MR88	467 448 432 418 407 396 387 30-06 VMD 520 499 481 467 454 443 433 425 30-08	3% 4% 5% 5% 6% 6% 7% 7402 <141 3% 4% 5% 5% 6% 6%	70% 73% 76% 78% 79% 81% 82% 83% 90-06 <65% 65% 71% 74% 75% 77% 78% 99-08	XC XC XC XC XC XC VC VC DR8 Classs XC	540 522 506 493 482 471 462 30-06 VMD 591 570 553 539 526 516 506 498 30-08	2% 3% 3% 4% 4% 44% *44028 <141 2% 2% 2% 2% 3% 3% 3% 3% 44028	62% 65% 67% 70% 71% 73% 74% 30-06 <600 52% 56% 59% 61% 63% 64% 66% 67% 30-08
80	-05 Nozzles	1.43 1.53 1.72 1.88 2.03 2.17 2.30 2.43 2.54 2.66 Flow L/min 1.69 1.80 2.02 2.21 2.39 2.55 2.71 2.85 2.99 3.12 Flow L/min	1.75 2.00 2.50 3.00 3.50 4.00 4.50 5.00 6.00 800 800 1.75 2.00 4.50 4.50 4.50 4.50 5.50 6.00 4.50 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6	1.59 1.81 2.26 2.72 3.17 3.62 4.08 4.53 4.98 5.43 Tip BAR 1.52 1.74 2.17 2.61 3.04 3.48 3.91 4.35 4.78 5.22 Tip BAR	4.3-17 4.5-18 5.3-21 5.8-23 6-24 6.5-26 7-28 7.3-29 7.8-31 8-32 Sprayer 125L/Ha 4-16 4.3-17 4.8-19 5.3-21 5.8-23 6-24 6.5-26 6.5-26 6.8-27 7.3-29 7.5-30 Sprayer	3.5-14 3.8-15 4-16 4.5-18 4.8-19 5.3-21 5.5-22 5.8-23 6-24 6.5-26 Speed (L/Ha 3.3-13 3.5-14 4-16 4.5-18 4.8-19 5-20 5.5-22 5.8-23 6-24 6.3-25 Speed (L/Ha 200L/Ha 200L/Ha	2.8-11 3-12 3.5-14 3.8-15 4-16 4.3-17 4.5-18 4.8-19 5-20 5.3-21 on 50cm spi 175L/Ha 3-12 3-12 3-12 3-5-14 3.8-15 4-16 4.3-17 4.8-19 5-20 5.3-21 on 50cm spi 250L/Ha	2.5-9.8 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18 acing) @ 200L/Ha 2.5-10 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18 3.8-15 4-16 3.8-15 4-16 3.8-15 4-16 4.3-17 4.5-18 4.8-19 acing) @ 300L/Ha 2.2-8.6	C M M M M M M M M M M M M M M M M M M M	286 276 261 249 249 225 219 209 0-06 VMD 316 307 293 283 274 266 260 254 250 250 209 0-06 VMD	11% 13% 15% 15% 20% 21% 23% 24% 26% 28% #402 <141 13% 21% 22% 25% 26% 27% 28% 4412 21% 4411 12%	95% 95% 95% 95% 95% 95% 95% 95% 95% 95%	C C C C C C C C C C C C C C C C C C C	375 351 331 313 298 284 272 260 0-0-06 VMD 439 414 395 380 367 356 347 338 331 0-08 VMD	8% 10% 11% 12% 15% 15% 16% #402! <141 4% 5% 6% 9% 9% 10% 10% 14402! <141	84% 85% 87% 88% 89% 90% 91% 88-06 <600 78% 81% 85% 85% 86% 89% 90% 88-06	VC VC VC C C C C C MR88 Classs XC XC VC VC VC VC MR88	467 448 432 418 407 396 387 30-06 VMD 520 499 481 467 454 443 433 425 30-08	3% 4% 5% 5% 6% 6% 7% 7402 <141 3% 4% 5% 5% 6% 6%	70% 73% 76% 78% 79% 81% 82% 83% 90-06 <65% 65% 71% 74% 75% 77% 78% 99-08	XC XC XC XC XC XC VC VC DR8 Classs XC	540 522 506 493 482 471 462 30-06 VMD 591 570 553 539 526 516 506 498 30-08	2% 3% 3% 4% 4% 44% *44028 <141 2% 2% 2% 2% 3% 3% 3% 3% 44028	62% 65% 67% 70% 71% 73% 74% 30-06 <600 52% 56% 59% 61% 63% 64% 66% 67% 30-08
80	-05 Nozzles	1.43 1.53 1.72 1.88 2.03 2.17 2.30 2.43 2.54 2.66 Flow L/min 1.69 1.80 2.02 2.21 2.39 3.12 Flow L/min 2.14	1.75 2.00 2.50 3.00 3.50 4.00 5.50 6.00 80m 1.75 2.00 3.50 4.00 3.50 4.00 3.50 6.00 80m 5.50 6.00 80m 80m 80m 1.75 6.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00	1.59 1.81 2.26 2.72 3.17 3.62 4.08 4.53 4.98 5.43 Tip BAR 1.52 1.74 2.17 3.04 3.91 3.91 4.35 4.78 5.22 Tip BAR 1.38	4.3-17 4.5-18 5.3-21 5.8-23 6-24 6.5-26 6.5-26 7-28 7.3-29 7.8-31 8-32 Sprayer 1251/Ha 4-16 4.3-17 4.8-19 5.3-21 5.8-23 6-24 6.5-26 6.8-27 7.3-29 7.5-30 Sprayer 1501/Ha 4.3-17	3.5-14 3.8-15 4-16 4.5-18 4.8-19 5.3-21 5.5-22 5.8-23 6-24 6.5-26 Speed (L/Ha 3.3-13 3.5-14 4-16 4.5-18 4.8-19 5-20 5.5-22 5.8-23 6-24 6.3-25 Speed (L/Ha 200L/Ha 200L/Ha	2.8-11 3-12 3.5-14 3.8-15 4-16 4.3-17 4.5-18 4.8-19 5-20 5.3-21 on 50cm spi 175L/Ha 3-12 3-5-14 3.8-15 4-16 4.3-17 4.8-19 5-20 5.3-21 on 50cm spi 5-3-21 on 50cm spi 5-3-21 on 50cm spi 5-3-21 on 50cm spi 5-3-21 on 50cm spi 5-3-21	2.5-9.8 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18 acing) @ 200L/Ha 2.5-10 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18 3.8-15 4-16 3.8-15 4-16 3.8-15 4-16 4.3-17 4.5-18 4.8-19 acing) @ 300L/Ha 2.2-8.6	C M M M M M M M M M M M M M M M M M M M	286 276 261 249 240 232 225 219 20-06 VMD 316 307 293 283 274 266 254 250 249 260 274 260 274 274 285 285 285 285 285 285 285 285	11% 13% 15% 15% 20% 21% 23% 24% 26% 28% #402 <141 13% 21% 22% 25% 26% 27% 28% 4412 21% 4411 12%	95% 95% 95% 95% 95% 95% 95% 95% 95% 95%	C C C C C C C C C C C C C C C C C C C	375 351 331 313 298 284 272 260 0-0-06 VMD 439 414 395 380 367 356 347 338 331 0-08 VMD	8% 10% 11% 12% 15% 15% 16% #402! <141 4% 5% 6% 9% 9% 10% 10% 14402! <141	84% 85% 87% 88% 89% 90% 91% 88-06 <600 78% 81% 85% 85% 86% 89% 90% 88-06	VC VC VC C C C C C MR88 Classs XC XC VC VC VC VC MR88	467 448 432 418 407 396 387 30-06 VMD 520 499 481 467 454 443 433 425 30-08	3% 4% 5% 5% 6% 6% 7% 7402 <141 3% 4% 5% 5% 6% 6%	70% 73% 76% 78% 79% 81% 82% 83% 90-06 <65% 65% 71% 74% 75% 77% 78% 99-08	XC XC XC XC XC XC VC VC DR8 Classs XC	540 522 506 493 482 471 462 30-06 VMD 591 570 553 539 526 516 506 498 30-08	2% 3% 3% 4% 4% 44% *44028 <141 2% 2% 2% 2% 3% 3% 3% 3% 44028	62% 65% 67% 70% 71% 73% 74% 30-06 <600 52% 56% 59% 61% 63% 64% 66% 67% 30-08
-08 3.03 3.50 2.76 6-24 4.5-18 3.8-15 3-12 M 285 21% 93% XC 448 9% 66% UC 499 8% 69% UC 584 4% 58% 80% 3.24 4.00 3.16 6.5-26 4.8-19 4-16 3.3-13 M 272 22% 93% XC 429 10% 69% UC 482 9% 72% UC 569 4% 60% 60% 3.44 4.50 3.55 7-28 5.3-21 4.3-17 3.5-14 F 261 24% 94% XC 412 10% 71% XC 467 9% 74% UC 556 5% 62% 62% 3.80 5.50 4.34 7.5-30 5.8-23 4.5-18 3.8-15 F 243 26% 95% XC 383 11% 75% XC 442 10% 77% UC 534 5% 66% 66% 4% 58% 4.54 4	-05 Nozzles	1.43 1.53 1.72 1.88 2.03 2.17 2.30 2.43 2.54 2.66 Flow L/min 1.69 1.80 2.02 2.21 2.39 2.55 2.71 2.85 2.99 3.12 Flow L/min 2.14 2.29	1.75 2.00 3.50 3.50 4.00 5.50 5.50 800m BAR 1.75 2.00 4.50 4.50 3.50 6.00 4.50 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6	1.59 1.81 2.26 2.72 3.17 3.62 4.98 5.43 Tip BAR 1.52 2.61 3.04 4.33 4.98 5.43 3.91 4.74 2.17 2.61 3.04 4.33 4.98 5.43 7.74 2.17 2.61 5.74 7.74 7.74 7.74 7.74 7.74 7.74 7.74	4.3-17 4.5-18 5.3-21 5.8-23 6-24 6.5-26 7-28 7.3-29 7.8-31 8-32 Sprayer 125L/Ha 4-16 4.3-17 4.8-19 5.3-21 5.8-23 6-24 6.5-26 6.8-27 7.3-29 Sprayer 150L/Ha 4.3-17	3.5-14 3.8-15 4-16 4.5-18 4.8-19 5.3-21 5.5-22 5.8-23 6-24 6.5-26 Speed (L/Ha 3.3-13 3.5-14 4-16 4.5-18 4.8-19 5-20 5.5-22 5.8-23 6-24 6.3-25 Speed (L/Ha 200L/Ha 3.3-13 3.5-14	2.8-11 3-12 3.5-14 3.8-15 4-16 4.3-17 4.5-18 4.8-19 5-20 5.3-21 on 50cm sp: 175L/Ha 3-12 3.5-14 3.8-15 4-16 4.3-17 4.8-19 5-20 5.3-21 on 50cm sp: 250L/Ha 2.5-10 2.8-11	2.5-9.8 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18 acing) @ 200L/Ha 2.5-10 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18 4.8-19 acing) @ 300L/Ha 2.2-8.6 2.3-9.2	C M M M M M M M M M M M M M M M M M M M	286 276 261 249 240 232 225 219 214 209 30-06 307 293 274 266 260 0-08 VMD 255 0-08 366 349	11% 13% 15% 15% 20% 21% 23% 26% 27% 4402 2441 13% 15% 17% 29% 4402 25% 27% #402 25% 27% #402 25% 27% 4141 12% 4144	95% 95% 95% 95% 95% 95% 95% 95% 95% 91% 91% 91% 90% 90% 90% 90% 80% 88%	C C C C C C C C C C C C C C C C C C C	375 351 331 313 298 298 272 260 0-0-6 VMD 439 414 395 380 367 336 347 338 331 0-0-8 VMD	8% 10% 11% 12% 14% 15% 16% 4402 <141 44% 59% 89% 99% 10% #4021 <141 6%	84% 85% 87% 88% 89% 90% 91% 88-06 <600 78% 81% 85% 85% 86% 88% 89% 89% 90% 51%	VC VC VC C C C C C MR88 Classs XC XC VC VC VC VC MR88	467 448 432 418 407 396 387 30-06 VMD 520 499 481 467 454 443 433 425 30-08	3% 4% 5% 5% 6% 6% 7% 7402 <141 3% 4% 5% 5% 6% 6%	70% 73% 76% 78% 79% 81% 82% 83% 90-06 <65% 65% 71% 74% 75% 77% 78% 99-08	XC XC XC XC XC XC VC VC DR8 Classs XC	540 522 506 493 482 471 462 30-06 VMD 591 570 553 539 526 516 506 498 30-08	2% 3% 3% 4% 4% 44% *44028 <141 2% 2% 2% 2% 3% 3% 3% 3% 44028	62% 65% 67% 70% 71% 73% 74% 30-06 <600 52% 56% 59% 61% 63% 64% 66% 67% 30-08
Nozzles 3.24 4.00 3.16 6.5-26 4.8-19 4-16 3.3-13 M 272 22% 93% XC 429 10% 69% UC 482 9% 72% UC 569 4% 60% 3.44 4.50 3.55 7-28 5.3-21 4.3-17 3.5-14 F 261 24% 94% XC 412 10% 71% XC 467 9% 74% UC 556 5% 62% 3.62 5.00 3.95 7.3-29 5.5-22 4.3-17 3.5-14 F 251 25% 95% XC 397 11% 73% XC 454 10% 75% UC 544 5% 64% 3.80 5.50 4.34 7.5-30 5.8-23 4.5-18 3.8-15 F 243 26% 95% XC 383 11% 75% XC 442 10% 77% UC 534 5% 66%	80 -06 Nozzles	1.43 1.53 1.72 1.88 2.03 2.17 2.30 2.43 2.54 2.66 Flow L/min 1.69 1.80 2.02 2.21 2.39 2.55 2.71 2.85 2.99 3.10 L/min 2.14 2.29 2.56	1.75 2.00 3.00 3.50 4.00 5.50 6.00 5.50 3.50 3.50 3.50 3.50 4.50 3.50 4.50 5.50 6.00 8.00 8.00 8.00 8.00 8.00 8.00 8.0	1.59 1.81 2.26 2.72 3.17 3.62 4.08 4.53 4.98 5.43 1.52 1.74 2.17 2.61 3.04 4.35 4.78 5.22 1.74 1.35 5.22 1.74 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35	4.3-17 4.5-18 5.3-21 5.8-23 6-24 6.5-26 7-28 7.3-29 7.8-31 8-32 Sprayer 125L/Ha 4-16 4.3-17 4.8-19 5.3-21 5.8-23 6-24 6.5-26 6.8-27 7.3-29 7.5-30 Sprayer 150L/Ha 4.3-17 4.5-18 5.3-21	3.5-14 3.8-15 4-16 4.5-18 4.8-19 5.3-21 5.5-22 5.8-23 6-24 6.5-26 Speed (L/Ha 3.3-13 3.5-14 4-16 4.5-18 4.8-19 5-20 5.5-22 5.8-23 6-24 6.3-25 Speed (L/Ha 3.3-13 3.5-14 3.3-13 3.5-14 3.3-13 3.5-14	2.8-11 3-12 3.5-14 3.8-15 4-16 4.3-17 4.5-18 4.8-19 5-20 5.3-21 on 50cm spi 175L/Ha 3-12 3.5-14 3.8-15 4-16 4.8-19 5-20 5.3-21 on 50cm spi 250L/Ha 2.5-10 2.8-11 3-12	2.5-9.8 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18 acing) @ 200L/Ha 2.5-10 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18 4.8-19 acing) @ 300L/Ha 2.2-8.6 2.3-9.2 2.5-10	C M M M M M M M M M M M M M M M M M M M	286 276 261 249 240 232 225 219 214 209 30-06 307 293 283 283 274 266 260 254 250 254 360-08 WMD 366 367 369 369 369 369 369 369 369 369 369 369	11% 13% 17% 20% 21% 24% 26% 24% 26% 37% 4402 23% 25% 23% 4411 12% 4640 4666	95% 95% 95% 95% 95% 95% 95% 95% 95% 90% 91% 91% 90% 90% 90% 6600 90% 90% 90% 6600 90% 90% 90% 90% 90% 90%	C C C C C C C C C C C C C C C C C C C	375 351 331 313 298 298 272 260 0-0-6 VMD 439 414 395 380 367 338 347 338 347 338 347 349 350 360 360 360 360 360 360 360 36	8% 10% 11% 12% 14% 15% 15% 16% 4402 <141 4% 7% 8% 9% 10% 4402 <141 6% 7%	84% 85% 87% 88% 89% 90% 91% 6600 78% 81% 85% 86% 85% 86% 87% 88% 88% 90% 85% 86% 87% 85% 86% 85% 85% 85% 85% 85% 85% 85% 85	VC VC VC C C C C C MR8 Class XC VC VC VC VC VC MR8 Class	467 448 432 418 407 396 387 30-06 VMD 520 499 481 467 454 443 433 425 30-08 VMD	3% 4% 5% 6% 6% 7% #402 <141 3% 5% 5% 6% 4% 4% 4% 4% 5% 5% 440 <	70% 73% 76% 78% 79% 81% 82% 600 65% 69% 771% 75% 778% 90-08 <600	XC X	540 522 506 493 482 471 462 30-06 VMD 591 570 553 526 516 498 30-08 VMD	2% 3% 3% 4% 4% 4% 422 <141 2% 2% 2% 33% 33% 34 34 402(<141	62% 65% 67% 70% 71% 73% 74% 80-06 <600 52% 66% 63% 66% 66% 67% 80-08 <600
3.44 4.50 3.55 7-28 5.3-21 4.3-17 3.5-14 F 261 24% 94% XC 412 10% 71% XC 467 9% 74% UC 556 5% 62% 3.62 5.00 3.95 7.3-29 5.5-22 4.3-17 3.5-14 F 251 25% 95% XC 397 11% 73% XC 454 10% 75% UC 544 5% 64% 3.80 5.50 4.34 7.5-30 5.8-23 4.5-18 3.8-15 F 243 26% 95% XC 383 11% 75% XC 442 10% 77% UC 534 5% 66%	80 -06 Nozzles	1.43 1.53 1.72 1.88 2.03 2.17 2.30 2.43 2.54 2.66 Flow L/min 1.69 1.80 2.02 2.21 2.39 2.55 2.99 3.12 Flow L/min 2.14 2.25 2.85 2.95 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.8	1.75 2.00 3.50 4.00 5.50 6.00 80am 1.75 2.00 3.50 4.00 3.50 4.00 5.50 6.00 80am 1.75 5.50 6.00 80am 1.75 5.00 5.50 6.00 80am 1.75 80am 1	1.59 1.81 2.26 2.72 3.17 3.62 4.08 4.98 5.43 Tip BAR 1.52 2.17 2.61 3.04 4.35 4.78 5.22 Tip BAR 1.35 4.78 5.23 1.74 2.17 2.17 2.61 1.30 4.35 4.35 4.35 4.35 4.35 4.35 4.35 4.35	4.3-17 4.5-18 5.3-21 5.8-23 6-24 6.5-26 7-28 7.3-29 7.8-31 8-32 Sprayer 125L/Ha 4-16 4.3-17 4.8-19 5.3-21 5.8-23 6-24 6.5-26 6.8-27 7.3-29 7.3-29 7.5-30 Sprayer 150L/Ha 4.3-17 4.5-18 5.3-21 5.5-22	3.5-14 3.8-15 4-16 4.5-18 4.8-19 5.3-21 5.5-22 5.8-23 6-24 6.5-26 Speed (L/Ha 3.3-13 3.5-14 4-16 4.5-18 4.8-19 5-20 5.5-22 5.8-23 6-24 6.3-25 Speed (L/Ha 3.3-13 3.5-14 4.3-17	2.8-11 3-12 3.5-14 3.8-15 4-16 4.3-17 4.5-18 4.8-19 5-20 5.3-21 0n 50cm spi 175L/Ha 3-12 3-12 3-12 3-5-14 3.8-15 4-16 4.3-17 4.8-19 5-20 5.3-21 0n 50cm spi 250L/Ha 2.5-10 2.8-11 3-12 3.3-13	2.5-9.8 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18 acing) @ 200L/Ha 2.5-10 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18 4.8-19 acing) @ 300L/Ha 2.2-8.6 2.3-9.2 2.5-10 2.8-11	C M M M M M M M M M M M M M M M M M M M	286 276 261 249 240 232 279 214 209 316 307 283 274 266 255 245 250 0.08 VMD 366 349 349 322 302	11% 13% 15% 15% 20% 21% 23% 26% 27% 28% 2141 13% 15% 21% 22% 24141 12% 25% 26% 27% 2141 12% 1446 149%	95% 95% 95% 95% 95% 95% 95% 95% 95% 95%	C C C C C C C C C C C C C C C C C C C	375 351 331 298 284 272 260 VMD 439 414 395 380 367 356 347 356 347 VMD 529 497	8% 10% 11% 12% 14% 15% 15% 6% 7% 8% 9% 90% 10% 4402! 4141 4405 10% 10% 4402! 4141 4405 66% 77% 10% 4405 4405 4405 4405 4405 4405 4405 44	84% 85% 87% 88% 89% 90% 91% 6600 78% 81% 85% 86% 87% 88% 86% 87% 88% 600 51% 600	VC VC VC C C C C C C MR8 Class XC XC VC VC VC VC VC UC MR8 Class	467 448 432 418 407 396 387 30-06 VMD 520 499 481 467 454 443 433 425 80-08 VMD	3% 4% 5% 6% 6% 7% 440 33% 440 55% 6% 640 540 541 541 541 541 541 541 541 541 541 541	70% 73% 76% 76% 76% 79% 81% 82% 83% 90-06 65% 71% 74% 75% 78% 798 90-08 <600	XC X	540 522 506 493 482 471 462 30-06 VMD 591 570 553 539 526 516 506 506 30-08 VMD	2% 3% 4% 4% 4% 44028 <1411 2% 2% 2% 2% 2% 2% 3% 3% 44028 <1411	62% 65% 67% 77% 71% 73% 74% 80-06 <600 55% 61% 63% 66% 66% 66% 30-08 <600
3.62 5.00 3.95 7.3-29 5.5-22 4.3-17 3.5-14 F 251 25% 95% XC 397 11% 73% XC 454 10% 75% UC 544 5% 66% 3.80 5.50 4.34 7.5-30 5.8-23 4.5-18 3.8-15 F 243 26% 95% XC 383 11% 75% XC 442 10% 77% UC 534 5% 66%	80 -06 Nozzles	1.43 1.53 1.72 1.88 2.03 2.17 2.30 2.43 2.54 2.66 Flow L/min 1.69 2.02 2.21 2.39 3.12 Flow L/min 2.14 2.29 2.55 2.71 3.03	1.75 2.00 3.00 3.50 4.00 5.50 5.50 8.00 8.00 8.00 8.00 8.00 8	1.59 1.81 2.26 2.72 3.17 3.62 4.98 5.43 Tip BAR 1.52 2.61 3.04 4.35 3.91 4.35 5.43 Tip BAR 1.52 2.17 2.61 1.74 4.35 5.22 Tip BAR 1.52 1.52 1.52 1.52 1.53 1.54 1.53 1.54 1.53 1.54 1.54 1.54 1.54 1.54 1.54 1.54 1.54	4.3-17 4.5-18 5.3-21 5.8-23 6-24 6.5-26 6.5-26 7-28 7.3-29 7.8-31 8-32 Sprayer 125L/Ha 4-16 4.3-17 4.8-19 5.3-21 5.8-23 6-24 6.5-26 6.8-27 7.3-29 7.5-30 Sprayer 150L/Ha 4.3-17 4.5-18 5.3-21 5.5-22 6-24	3.5-14 3.8-15 4-16 4.5-18 4.8-19 5.3-21 5.5-22 5.8-23 6-24 6.5-26 Speed (L/Ha 150L/Ha 3.3-13 3.5-14 4-16 4.5-18 4.8-19 5-20 5.5-22 5.8-23 6-24 6.3-25 Speed (L/Ha 200L/Ha 3.3-13 3.5-14 4.3-17 4.5-18	2.8-11 3-12 3.5-14 3.8-15 4-16 4.3-17 4.5-18 4.8-19 5-20 5.3-21 on 50cm spi 175L/Ha 3-12 3-5-14 3.8-15 4-16 4.3-17 4.8-19 5-20 5.3-21 on 50cm spi 250L/Ha 2.5-10 2.8-11 3.3-13 3.8-15	2.5-9.8 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18 acing) @ 200L/Ha 2.5-10 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18 4.9 200L/Ha 2.5-10 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18 4.8-19 acing) @ 300L/Ha 2.2-8.6 2.3-9.2 2.5-10 2.8-11 3-12	C M M M M M M M M M M M M M M M M M M M	286 276 261 249 240 232 225 219 214 209 300-06 VMD 316 307 293 274 266 254 250 245 0-08 349 366 349 322 285	11% 13% 17% 20% 21% 21% 24% 26% 27% 28% #402 113% 15% 15% 12% 22% 2141 12% 1446 16% 16% 21% 21%	95% 95% 95% 95% 95% 95% 95% 95% 95% 95%	C C C C C C C C C C C C C C C C C C C	375 351 331 333 298 284 272 260 0-06 VMD 414 395 380 367 338 331 0-08 529 497 470 448	8% 10% 12% 14% 15% 16% #402! <141 4% 6% 7% 8% 9% 10% 4402! <141 6% 7% 6% 7% 88%	84% 85% 87% 89% 89% 90% 88-06 <600 78% 81% 83% 85% 86% 86% 88% 89% 90% 51% 51% 66% 66%	VC VC VC C C C C C C MR8 Classs XC VC VC VC VC VC UC UC UC	467 448 432 418 407 396 387 80-06 520 499 481 467 454 443 433 30-08 VMD	3% 4% 5% 6% 6% 6% 4402 <141 3% 4% 5% 6% #402 <141 7% 8%	70% 73% 76% 79% 81% 82% 82% 90-06 65% 69% 74% 77% 79% 90-08 <600	XC XC XC XC XC XC VC VC DR8 Classs XC	540 522 506 493 482 471 462 30-06 VMD 591 570 553 598 506 498 30-08 VMD	2% 3% 3% 4% 4% 4% 4% 2% 2% 2% 3% 3% 44028 2% 2% 24 3% 44028 4141	62% 65% 67% 77% 71% 73% 74% 830-06 <600 55% 61% 63% 66% 80-08 <600 55% 55% 55% 55% 55% 55%
3.80 5.50 4.34 7.5-30 5.8-23 4.5-18 3.8-15 F 243 26% 95% XC 383 11% 75% XC 442 10% 77% UC 534 5% 66%	80 -06 Nozzles	1.43 1.53 1.72 1.88 2.03 2.17 2.30 2.43 2.54 2.66 Flow L/min 1.69 1.80 2.02 2.21 2.39 3.12 Flow L/min 2.14 2.55 2.71 2.85 2.71 2.85 2.95 3.12 Flow L/min 2.14 3.03 3.24	1.75 2.00 3.50 3.50 4.00 5.50 6.00 80om BAR 1.75 5.50 4.50 4.50 2.50 3.50 6.00 80om BAR 1.75 5.50 6.00 80om BAR 1.75 5.50 6.00 80om BAR 1.75 6.00 80om BAR 8	1.59 1.81 2.26 2.72 3.17 3.62 4.98 5.43 Tip BAR 1.52 2.17 2.61 3.04 4.33 4.98 5.43 1.74 2.61 1.74 4.35 4.78 5.22 Tip BAR 1.38 1.39 1.39 1.39 1.39 1.39 1.39 1.39 1.39	4.3-17 4.5-18 5.3-21 5.8-23 6-24 6.5-26 7-28 7.3-29 7.8-31 8-32 Sprayer 125L/Ha 4-16 4.3-17 4.8-19 5.3-21 5.8-23 6-24 6.5-26 6.8-27 7.3-29 Sprayer 150L/Ha 4.3-17 4.5-18 5.3-21 5.3-21 5.3-21 5.3-21 6.5-26 6.8-27 7.3-29 8-32 8-	3.5-14 3.8-15 4-16 4.5-18 4.8-19 5.3-21 5.5-22 5.8-23 6-24 6.5-26 Speed (L/Ha 3.3-13 3.5-14 4-16 4.5-18 4.8-19 5-20 5.5-22 5.8-23 6-24 6.3-25 Speed (L/Ha 200L/Ha 3.3-13 3.5-14 4.3-17 4.5-18 4.8-19	2.8-11 3-12 3.5-14 3.8-15 4-16 4.3-17 4.5-18 4.8-19 5-20 5.3-21 on 50cm sp: 175L/Ha 3-12 3.5-14 3.8-15 4-16 4.3-17 4.8-19 5-20 5.3-21 on 50cm sp: 250L/Ha 3.8-15 3.8-15 4.8-19 5-20 5.3-21 5.3-21 on 50cm sp: 250L/Ha 3.8-15 4.8-19 5-3-21 5.3-21	2.5-9.8 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18 acing) @ 200L/Ha 2.5-10 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18 acing) @ 300L/Ha 2.5-10 2.8-11 3-12 3.3-13	C M M M M M M M M M M M M M M M M M M M	286 279 249 240 232 225 219 214 209 30-66 VMD 316 260 254 309 307 293 283 274 250 254 30-8 349 322 302 285 272	11% 13% 17% 20% 21% 24% 26% 244% 26% #402 <141 13% 17% 21% 28% #402 <141 12% 406 14% 16% 19% 14% 16% 19% 22% 2441 22%	95% 95% 95% 95% 95% 95% 95% 95% 95% 95%	C C C C C C C C C C C C C C C C C C C	375 351 331 333 298 284 272 260 0-0-66 VMD 439 380 367 338 331 0-08 VMD 529 497 470 448 448	8% 10% 11% 12% 14% 15% 15% 15% 4402 <141 4% 6% 9% 10% 8402 <141 6% 7% 88 89 94 10%	84% 85% 88% 89% 90% 91% 88-06 <600 78% 86% 86% 86% 86% 88-08 88-08 88-08 88-08 600 51% 62% 62% 69%	VC VC VC C C C C C C WR8 Class XC VC VC VC VC UC UC UC UC	467 448 432 418 407 396 80-06 VMD 520 481 467 454 443 425 80-08 VMD	3% 4% 5% 6% 6% 6% 4402 <141 3% 4% 4% 5% 6% #402 <141 7% 8% 6% 9%	70% 73% 76% 78% 79% 81% 82% 82% 600 65% 69% 71% 75% 77% 90-08 66% 69% 69% 69%	XC XC XC XC XC VC VC DR8 Classs XC	540 522 506 493 482 471 462 30-06 VMD 591 570 553 526 498 80-08 VMD	2% 3% 4% 4% 4% 4% 2% 2% 2% 3% 3% 44028 <141	62% 65% 67% 70% 71% 73% 74% 6800 552% 55% 66% 66% 66% 66% 6600 555% 6600
3.80 5.50 4.34 7.5-30 5.8-23 4.5-18 3.8-15 F 243 26% 95% XC 383 11% 75% XC 442 10% 77% UC 534 5% 66%	80 -06 Nozzles	1.43 1.53 1.72 1.88 2.03 2.17 2.30 2.43 2.54 2.66 Flow L/min 1.69 1.80 2.02 2.21 2.39 2.55 2.99 3.12 2.10 2.85 2.99 3.12 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2	1.75 2.00 3.00 3.50 4.00 5.50 6.00 BAR 1.75 2.00 3.50 4.00 3.50 3.50 3.50 3.50 4.50 3.00 3.50 5.50 6.00 800 800 800 800 800 800 800 800 800	1.59 1.81 2.26 2.72 3.17 3.62 4.98 4.53 4.98 5.43 1.52 1.74 2.17 2.61 3.04 4.35 4.78 5.22 Tip BAR 1.32 4.78 5.22 Tip BAR 1.32 4.78 5.22 Tip BAR 1.35 5.22 5.22 5.22 5.22 5.22 5.22 5.22 5	4.3-17 4.5-18 5.3-21 5.8-23 6-24 6.5-26 7-28 7.3-29 7.8-31 8-32 Sprayer 125L/Ha 4-16 4.3-17 4.8-19 5.3-21 5.8-23 6-24 6.5-26 6.8-27 7.3-29 7.5-30 Sprayer 150L/Ha 4.3-17 4.5-18 5.3-21 5.3-21 5.5-22 6-24 6-5-26 6-8-27 7.3-29 7.5-30	3.5-14 3.8-15 4-16 4.5-18 4.8-19 5.3-21 5.5-22 5.8-23 6-24 6.5-26 Speed (L/Ha 3.3-13 3.5-14 4-16 4.5-18 4.8-19 5-20 5.5-22 5.8-23 6-24 6.3-25 Speed (L/Ha 3.3-13 3.5-14 4.5-18 4.8-19 5-3-21	2.8-11 3-12 3.5-14 3.8-15 4-16 4.3-17 4.5-18 4.8-19 5-20 5.3-21 0n 50cm spi 175L/Ha 3.8-15 4-16 3.8-15 4-16 4.3-17 4.8-19 5-20 5.3-21 0n 50cm spi 250L/Ha 2.5-10 2.8-11 3.12 3.3-13 3.8-15 4-16 4.3-17	2.5-9.8 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18 acing) @ 200L/Ha 2.5-10 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18 4.8-19 acing) @ 300L/Ha 2.2-8.6 2.3-9.2 2.5-10 2.8-11 3-12 3.3-13 3.5-14	C M M M M M M M M M M M M M M M M M M M	286 276 261 249 240 232 219 214 209 30-06 VMD 316 283 274 250 293 283 274 250 306 260 254 259 307 293 324 309 360 285 302 245 245 255 209 209 209 209 209 209 209 209 209 209	11% 13% 13% 17% 20% 21% 24% 26% 28% 28% #402 <141 13% 21% 22% 25% 26% 27% 28% 28% 4402 21% 22% 2141 12% 14% 19% 21% 22% 244%	95% 95% 95% 95% 95% 95% 95% 95% 95% 95%	C C C C C C C C C C C C C C C C C C C	375 351 313 3298 284 272 260 0-0-66 VMD 439 414 395 380 367 356 347 356 VMD 529 497 470 448 429 412	8% 10% 12% 14% 15% 16% #402i <141 4% 5% 6% 7% 8% 9% 10% 610% 64% 10% 8% 99% 10% 10% 10% 10% 10%	84% 85% 87% 89% 90% 90% 88-60 78% 81% 83% 85% 87% 88% 86% 87% 88% 6600 51% 66% 66% 66% 66% 71%	VC VC VC C C C C C C C C WR88 XC XC VC	467 448 432 418 407 396 387 780-06 VMD 520 489 481 467 454 443 33 425 30-08 VMD	3% 4% 5% 6% 6% 7% 7% #402 <141 3% 5% 5% 6% 4% 4% 4% 4% 5% 5% 6% 8% 9%	70% 73% 76% 76% 79% 81% 82% 83% 90-06 65% 65% 71% 74% 78% 69% 66% 69% 72% 72%	XC VC VC VC XC	540 522 506 493 482 471 462 30-06 VMD 591 570 553 526 516 506 508 VMD	2% 3% 4% 4% 4% 2% 2% 2% 2% 3% 3% 34 44025 <141	62% 65% 65% 70% 71% 73% 30-06 <600 52% 64% 66% 66% <600 55% 6600 55% 6600 66% 66% 66% 66% 66% 66% 66% 66% 6
	80 -06 Nozzles	1.43 1.53 1.72 1.88 2.03 2.17 2.30 2.43 2.54 2.66 Flow L/min 1.69 1.80 2.02 2.21 2.39 2.55 2.99 3.12 2.10 2.85 2.99 3.12 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2	1.75 2.00 3.50 3.50 4.00 5.50 6.00 80 80 80 80 80 80 80 80 80 80 80 80 8	1.59 1.81 2.26 2.27 3.17 3.62 4.08 4.53 4.98 1.52 2.61 2.61 3.04 4.33 3.91 4.35 5.22 Tip BAR 1.52 2.61 1.74 4.35 5.22 Tip BAR 1.52 2.76 3.16 3.16 3.16 3.16 3.16 3.16 3.16 3.1	4.3-17 4.5-18 5.3-21 5.8-23 6-24 6.5-26 7-28 7.3-29 7.8-31 8-32 Sprayer 125L/Ha 4-16 4.3-17 4.8-19 5.3-21 5.8-23 6-24 6.5-26 6.8-27 7.3-29 7.5-30 Sprayer 150L/Ha 4.3-17 4.5-18 5.3-21 5.3-21 5.5-22 6-24 6-5-26 6-8-27 7.3-29 7.5-30	3.5-14 3.8-15 4-16 4.5-18 4.8-19 5.3-21 5.5-22 5.8-23 6-24 6.5-26 Speed (L/Ha 3.3-13 3.5-14 4-16 4.5-18 4.8-19 5-20 5.5-22 5.8-23 6-24 6.3-25 Speed (L/Ha 3.3-13 3.5-14 4.5-18 4.8-19 5-3-21	2.8-11 3-12 3.5-14 3.8-15 4-16 4.3-17 4.5-18 4.8-19 5-20 5.3-21 0n 50cm spi 175L/Ha 3.8-15 4-16 3.8-15 4-16 4.3-17 4.8-19 5-20 5.3-21 0n 50cm spi 250L/Ha 2.5-10 2.8-11 3.12 3.3-13 3.8-15 4-16 4.3-17	2.5-9.8 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18 acing) @ 200L/Ha 2.5-10 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18 4.8-19 acing) @ 300L/Ha 2.2-8.6 2.3-9.2 2.5-10 2.8-11 3-12 3.3-13 3.5-14	C M M M M M M M M M M M M M M M M M M M	286 276 261 249 240 232 219 214 209 30-06 VMD 316 283 274 250 293 283 274 250 306 260 254 259 307 293 324 309 360 285 302 245 245 255 209 209 209 209 209 209 209 209 209 209	11% 13% 13% 17% 20% 21% 21% 24% 28% #402 <141 13% 15% 15% 46% 402 41% 22% 21% 21% 22% 21% 21% 22% 21% 21% 2	95% 95% 95% 95% 95% 95% 95% 95% 95% 95%	C C C C C C C C C C C C C C C C C C C	375 351 313 3298 284 272 260 0-0-66 VMD 439 414 395 380 367 356 347 356 VMD 529 497 470 448 429 412	8% 10% 12% 14% 15% 16% #402! <141 4% 5% 8% 9% 10% 10% 6% 7% 8% 99% 10% 10% 10% 11%	84% 85% 88% 89% 90% 91% 88-06 <600 78% 85% 85% 85% 86% 85% 66% 69% 69% 73%	VC VC VC C C C C C C C C WR88 XC XC VC	467 448 432 418 407 396 520 499 481 454 443 433 425 520 499 499 481 454 454 454 454	3% 4% 5% 5% 6% 6% 7% 7402 <141 3% 4% 5% 6% #402 <141 7% 8% 9% 10%	70% 73% 76% 76% 79% 81% 82% 83% 90-06 6600 65% 774% 778% 79% 66% 69% 777% 777% 777% 78% 79%	XC VC VC VC XC	540 522 506 493 482 471 506 508 509 509 509 509 509 509 509 509 509 509	2% 3% 4% 4% 4% 2% 2% 2% 2% 3% 3% 34 44025 <141	62% 65% 67% 70% 71% 73% 74% 6800 552% 55% 66% 66% 66% 66% 6600 555% 6600
	80 -06 Nozzles	1.43 1.53 1.72 1.88 2.03 2.17 2.30 2.43 2.54 2.66 Flow L/min 1.69 1.80 2.02 2.21 2.39 2.55 2.99 3.12 Flow L/min 2.14 2.25 2.85 2.99 3.12 8.30 3.12 8.30 3.12 8.30 3.30 3.30 3.30 3.30 3.30 3.30 3.30	1.75 2.00 3.50 3.50 4.00 5.50 6.00 80 80 80 80 80 80 80 80 80 80 80 80 8	1.59 1.81 2.26 2.27 3.17 3.62 4.08 4.53 4.98 1.52 2.61 2.61 3.04 4.33 3.91 4.35 5.22 Tip BAR 1.52 2.61 1.74 4.35 5.22 Tip BAR 1.52 2.76 3.16 3.16 3.16 3.16 3.16 3.16 3.16 3.1	4.3-17 4.5-18 5.3-21 5.8-23 6-24 6.5-26 6.5-26 7-28 7.3-29 7.8-31 8-32 Sprayer 1251/Ha 4-16 4.3-17 4.8-19 5.3-21 5.8-23 6-24 6.5-26 6.8-27 7.3-29 7.5-30 Sprayer 1501/Ha 4.3-17 4.3-18 4.3-17 4.3-17 4.3-17 4.3-17 4.3-17 4.3-17 4.3-17 4.3-17 4.3-17 4.3-17 4.3-17 4.3-17 4.3-17 4.3-17 4.3-17 4.3-18 4.3-17 4.3-18 4.3-	3.5-14 3.8-15 4-16 4.5-18 4.8-19 5.3-21 5.5-22 5.8-23 6-24 6.5-26 Speed (L/Ha 150L/Ha 3.3-13 3.5-14 4-16 4.5-18 4.8-19 5-20 5.5-22 5.8-23 6-24 6.3-25 Speed (L/Ha 3.3-13 3.5-14 4.8-19 5-20 5.5-22 5.8-23 6-24 6.3-25 Speed (L/Ha 3.3-13 3.5-14 3.8-15 4.8-19 5.5-21 5.5-22	2.8-11 3-12 3.5-14 3.8-15 4-16 4.3-17 4.5-18 4.8-19 5-20 5.3-21 0n 50cm spi 175L/Ha 3-12 3-12 3-12 3-5-14 3.8-15 4-16 4.3-17 4.8-19 5-20 5.3-21 0n 50cm spi 250L/Ha 2.5-10 2.8-11 3-12 3.3-13 3.8-15 4-16 4.3-17	2.5-9.8 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18 acing) @ 2001/Ha 2.5-10 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18 4.8-19 acing) @ 2001/Ha 2.2-8.6 2.3-9.2 2.5-10 2.8-11 3-12 3.3-13 3.5-14 3.5-14	C M M M M M M M M M M M M M M M M M M M	286 276 249 249 240 232 225 219 214 30-06 WMD 316 307 293 283 283 260 245 30-08 349 322 255 30-08 245 30-08 257 259 260 260 260 260 260 260 260 260 260 260	11% 13% 13% 17% 20% 21% 21% 24% 26% 28% #402 <141 13% 25% 26% 27% 26% 21% 21% 22% 21% 21% 22% 21% 21% 22% 21% 25% 25% 25% 25% 25% 25% 25% 25%	95% 95% 95% 95% 95% 95% 95% 95% 95% 95%	C C C C C C C C C C C C C C C C C C C	375 351 331 3313 298 284 272 260 0-06 VMD 439 414 395 380 395 380 395 395 395 470 470 448 429 429 429 412 397	8% 10% 12% 14% 15% 16% #402! <141 4% 5% 8% 9% 10% 10% 6% 7% 8% 99% 10% 10% 10% 11%	84% 85% 88% 89% 90% 91% 88-06 <600 78% 85% 85% 85% 86% 85% 66% 69% 69% 73%	VC VC VC C C C C MR8 Classs XC XC VC	467 448 432 418 407 396 520 499 481 454 443 433 425 520 499 499 481 454 454 454 454	3% 4% 5% 5% 6% 6% 7% 7402 <141 3% 4% 5% 6% #402 <141 7% 8% 9% 10%	70% 73% 76% 76% 79% 81% 82% 83% 90-06 6600 65% 774% 778% 79% 66% 69% 777% 777% 777% 78% 79%	XC XC XC VC VC VC DR& XC	540 522 506 493 482 471 506 508 509 509 509 509 509 509 509 509 509 509	2% 3% 4% 4% 4% 4% 2% 2% 2% 2% 2% 3% 3% 4402t <141	62% 65% 65% 70% 71% 73% 30-06 <600 52% 64% 66% 66% <600 55% 6600 55% 6600 66% 66% 66% 66% 66% 66% 66% 66% 6

NOTE: ¹SR, MR, DR, UR spray tips include pre-orifice(s). Pre-orifices are not interchangeable between different spray tips of different series. ²Shown application information is based on water @ 26.5°C in a controlled environment and should not be considered actual. Information is provided for comparison to other Combo-Jet® spray tips, for educational purposes only. Repeat testing results can vary.

COMBO-JET 80° Spray Tips - PWM Spray Systems

Comprehensive rate & speed charts for any nozzle spacing/speed/rate is available on Tip Wizard. Try it today!

Disclaimer: These charts are published for comparative purposes to demonstrate the differences in the series of Combo-Jet® spray tips. Data used to populate this chart is extrapolated from third party testing data from a controlled conditions test with water as the testing solution. Actual spray applications with active chemical ingredients may change the spray dynamics and spray tip performance specifications. Wilger is not liable for any misuse or misrepresentation of this information, leading to (but not limited to) incorrect spray application, crop damage, or any other harm. (Not limited to human, livestock or environmental). Always verify these charts with the most recent charts found on the www.wilger.net, and ALWAYS follow chemical label nozzle requirements.

ASABE Spray Classification (ASABE 55/2.1 Standard)

Spray quality is categorized based on Dv.1. and VMD droplet sizes.

Objective testing data (by 3rd party), from parsy spectrum recording equipment (without wind tunner use), has been used to classify spray quality for this chart. Extra data (e.g. VMD, etc.), can vary between testing equipment and method, and is provided as an educational resource only.

Extremely Coarse (XC)

Ultra Coarse (UC)

Ultra Coarse (UC) ASABE Spray Classification (ASABE S572.1 Standard)

Fine (F)

VMD (Volume Median Diameter) sprayed volume. Half of the volume is made of droplets smaller, with half made up of droplets larger.

% <141µ (% Driftable Fines) Percentage of volume which is likely to drift. As wind & boom height increase, observed spray drift will increase substantially

% <600µ (% of Small Droplets) % of volume which is made up of small' droplets, useful for coverage As % of useful droplets lowers, overall coverage is reduced

	Flow	Boom	Tip		Speed (L/Ha			ER8	0-10	#402		SR	30-10	#402	88-10	MR	30-10	#402	90-10	DR8	0-10	#4028	_
	L/min	BAR	BAR	200L/Ha	250L/Ha	300L/Ha	350L/Ha	Class	VMD	<141	<600												
	2.71	2.00	1.41	4-16	3.3-13	2.8-11	2.3-9.3	XC	455	9%	78%												
	3.03	2.50	1.77	4.5-18	3.8-15	3-12	2.5-10	XC	425	11%	80%		534	6%	51%								
80	3.32	3.00	2.12	5-20	4-16	3.3-13	2.8-11	XC	402	12%		UC	508	7%	56%								
-10	3.58	3.50	2.47	5.5-22	4.3-17	3.5-14	3-12	VC	383	13%		UC	487	7%	60%		525	6%	65%	UC	593	5%	55%
Nozzles	3.83	4.00	2.82	5.8-23	4.5-18	3.8-15	3.3-13	С	368	14%		XC	468	8%	63%	UC	510	6%	67%	UC	580	5%	57%
	4.06	4.50	3.18	6-24	5-20	4-16	3.5-14	С	355	15%		XC	452	8%	66%	UC	497	7%	69%	UC	569	6%	59%
	4.28	5.00	3.53	6.5-26	5.3-21	4.3-17	3.8-15	С	344	16%	86%	XC	437	9%	68%		486	7%	70%	UC	559	6%	61%
	4.49	5.50	3.88	6.8-27	5.5-22	4.5-18	3.8-15	M	334		87%	XC	424	9%	70%		476	7%	72%	UC	550	6%	62%
	4.69	6.00	4.24	7-28	5.8-23	4.8-19	4-16	M	325	18%	87%	XC	412	10%	71%	XC	467	8%	73%			6%	63%
	Flow	Boom	Tip	Sprayer	Speed (L/Ha	on 50cm spa	acing) @	ER8	0-125	#4027	0-125	SR8	0-125	#4028	8-125	MR8	0-125	#4029	0-125	DR8	0-125	#4028	0-125
	L/min	BAR	BAR	250L/Ha	300L/Ha	350L/Ha	400L/Ha	Class	VMD	<141	<600												
	3.14	2.00	1.21	3.8-15	3.3-13	2.8-11	2.4-9.4	XC	474	8%	74%												
	3.51	2.50	1.52	4.3-17	3.5-14	3-12	2.8-11	XC	447	10%	77%												
80	3.84	3.00	1.82	4.5-18	3.8-15	3.3-13	3-12	XC	427	11%	79%	UC	525	6%	52%								
-125	4.15	3.50	2.12	5-20	4.3-17	3.5-14	3-12	XC	410	11%	81%	UC	506	7%	56%								
Nozzles	4.44	4.00	2.42	5.3-21	4.5-18	3.8-15	3.3-13	VC	396	12%	82%	UC	490	8%	58%	UC	569	6%	58%	UC	608	4%	52%
	4.71	4.50	2.73	5.8-23	4.8-19	4-16	3.5-14	VC	384	13%	83%	XC	476	8%	61%	UC	557	6%	60%	UC	596	5%	54%
	4.96	5.00	3.03	6-24	5-20	4.3-17	3.8-15	С	374	13%	84%	XC	463	9%	63%	UC	547	7%	62%	UC	586	5%	55%
	5.20	5.50	3.33	6.3-25	5.3-21	4.5-18	4-16	С	365	14%	85%	XC	451	9%	64%	UC	538	7%	63%	UC	577	5%	57%
	5.43	6.00	3.64	6.5-26	5.5-22	4.8-19	4-16	С	357	14%	86%	XC	441	9%	66%	UC	530	7%	64%	UC	569	5%	58%
	Flow	Boom	Tip	Sprayer	Speed (L/Ha	on 50cm spa	acing) @	ER8	0-15	#402	70-15	SR	30-15	#402	88-15	MR	30-15	#402	90-15	DR8	0-15	#4028	80-15
	L/min	BAR	BAR	300L/Ha	400L/Ha	450L/Ha	500L/Ha	Class	VMD	<141	<600												
	3.88	2.50	1.29	4-16	3-12	2.5-10	2.3-9.3	XC	473	7%	76%												
	4.26	3.00	1.55	4.3-17	3.3-13	2.8-11	2.5-10	XC	448	8%	77%												
80	4.60	3.50	1.81	4.5-18	3.5-14	3-12	2.8-11	XC	428	9%	78%			5%	44%								
-15	4.91	4.00	2.07	5-20	3.8-15	3.3-13	3-12	XC	412	10%		UC	554	6%	47%								
Nozzles	5.21	4.50	2.32	5.3-21	4-16	3.5-14	3.3-13	XC	398	11%	80%		540	6%	50%			8%	68%	UC	624	3%	50%
	5.49	5.00	2.58	5.5-22	4-16	3.8-15	3.3-13	VC	386		81%		527	6%	52%	UC	487	8%	69%		612	3%	52%
	5.76	5.50	2.84	5.8-23	4.3-17	3.8-15	3.5-14	VC	376		81%		516	6%	54%	XC	477	9%	71%	UC		3%	54%
	6.02	6.00	3.10	6-24	4.5-18	4-16	3.5-14	С	366				505	7%	56%	XC	467	9%	72%	UC	593	4%	55%
	Flow	Boom	Tip	Sprayer	Speed (L/Ha	on 50cm spa			0-20	#402		SR8	30-20	#402	88-20		30-20	#402	90-20	DR8	0-20	#4028	30-20
	L/min	BAR	BAR	400L/Ha	500L/Ha	600L/Ha	700L/Ha	Class	VMD	<141	<600												
	5.22	3.50	1.31	4-16	3.3-13	2.5-10	2.3-9	UC	518	6%	66%												
80	5.59	4.00	1.50	4.3-17	3.3-13	2.8-11	2.4-9.6	UC	500	7%	68%												
-20	5.92	4.50	1.69	4.5-18	3.5-14	3-12	2.5-10	UC	485	8%	70%	UC	577	5%	43%								
Nozzles	6.24	5.00	1.88	4.8-19	3.8-15	3-12	2.8-11	XC	472	8%	72%	UC	563	5%	46%								
	6.55	5.50	2.06	5-20	4-16	3.3-13	2.8-11	XC	461	9%	73%	UC	551	5%	48%								
	6.84	6.00	2.25	5.3-21	4-16	3.5-14	3-12	XC	450	9%	74%	UC	540	6%	50%	UC	552	5%	60%	UC	616	3%	52%

NOTE: 1SR, MR, DR, UR spray tips include pre-orifice(s). Pre-orifices are not interchangeable between different spray tips of different series. Shown application information is based on water @ 26.5°C in a controlled environment and should not be considered actual. Information is provided for comparison to other Combo-Jet® spray tips, for educational purposes only. Repeat testing results can vary.

COMBO-JET 110° Spray Tips - PWM Spray Systems

Comprehensive rate & speed charts for any nozzle spacing/speed/rate is available on Tip Wizard. Try it today!

Disclaimer: These charts are published for comparative purposes to demonstrate the differences in the series of Combo-Jet® spray tips. Data used to populate this chart is extrapolated from third party testing data from a controlled conditions test with water as the testing solution. Actual spray applications with active chemical ingredients may change the spray dynamics and spray tip performance specifications. Wilger is not liable for any misuse or misrepresentation of this information, leading to (but not limited to) incorrect spray application, crop damage, or any other harm. (Not limited to human, livestock or environmental). Always verify these charts with the most recent charts found on the www.wilger.net, and ALWAYS follow chemical label nozzle requirements.

ASABE Spray Classification (ASABE S572.1 Standard)
Spray quality is categorized based on DV0.1 and VMD droplet sizes.

Objective testing data (by 3rd party), from spray spectrum recording equipment (without wind tunnel color)
use), has been used to classify spray quality for this chart. Extra data (e. y MMD, etc.) can vary between testing equipment and method, and is provided as an educational resource only.

VMD (Volume Median Diameter) The median droplet (in μ) for a sprayed volume. Half of the volume is made of droplets smaller, with

% <141µ (% Driftable Fines) Percentage of volume which is likely to drift. As wind & boom height increase, observed spray

% <600µ (% of Small Droplets) % of volume which is made up of 'small' droplets, useful for coverage. As % of useful droplets lowers,

between Tips sized up to	testing equ 110-06 verifie	ipment an d on Phase	d method, Doppler Part	and is provided icle Analyzer (PDPA)	as an education); tips sized over 11	al resource only. 0-06 verified on M	∟ Extre alvem. ■ Ultra							oplets la					serveu s substanti				overage i		
Nozzle	Flow	Doom	Tin	Applio	cation Rate	in Litres/He	ectare			Spray	Classi	fication	on; VMI	D (Drop	let Size	in µ); %<1	41μ (D	rift %);	%<6	00μ (S	mall Dr	roplets)	
Size &	Rate	Boom BAR	Tip psi		n 50cm No			01)° Serie		01		° Serie)° Seri		01)° Serie			Series
Angle	L/min Flow	Boom	Tip		Sprayer Speed (L/Ha o			Class ER1	VMD 10-01		81-01	Class	VIVID	<141	<000	Class	VIVID	<141	<000	Class	VIVID	<141	<600	Class	VMD
	L/min	BAR	BAR	20L/Ha	30L/Ha	40L/Ha	50L/Ha	Class	VMD	<141	<600														
	0.279	1.50 1.75	1.49	4.3-17	2.8-11	2.1-8.4	1.7-6.7	F	147		100%					[Outy (ycle a	& Spe	ed R	ange				H
110	0.301		1.74	4.5-18 4.8-19	3-12 3.3-13	2.3-9 2.4-9.7	1.8-7.2 1.9-7.7	F	143 140		100% 100%												nges are 6 is recor		
-01	0.360	2.50	2.49	5.5-22	3.5-14	2.8-11	2.2-8.6	F	135	54%	100%				providing	flexib	ility for ı	ipper sp	eed & tu	rning s	ituation	s, as wel	ll as slow		
Nozzles	0.394		2.99 3.49	6-24 6.5-26	4-16 4.3-17	3-12 3.3-13	2.4-9.5 2.5-10	F	131 128		100% 100%	Н <u>.</u>			spe	eds. It	is not a	dvised t	o spray b	elow 4	10% dut	y cycle.			
	0.455		3.98	6.8-27	4.5-17	3.5-14	2.8-11	F	125		100%	НГ	Calc	ulatin	g Duty	/ Cyc	le on	Print	ed Ch	arts	(Useful :	for nozzl	e sizing a	& select	tion)
	0.483	4.50		7.3-29	4.8-19	3.5-14	3-12	F	122		100%		On Wild	ger printe	ed charts	s, typic	ally a SI	PEED RA	NGE is p	rovide	d, but th	e duty cy	ycle % is iven tra v	a dyna	mic
	0.509	5.00 5.50		7.8-31 8-32	5-20 5.3-21	3.8-15 4-16	3-12 3.3-13	F	120 118		100% 100%		idotori	Jasca on		e CUR	RENT s	prayer	speed ir	nto ma	x nozz	le speed		voi apo	.cu,
	0.557	6.00	5.98	8.3-33	5.5-22	4.3-17	3.3-13	F	116	68%	100%								max =			_			
	Flow L/min	Boom BAR	Tip BAR		peed (L/Ha 50L/Ha			ER11 Class														#4028			
	0.417	1.50	1.49	35L/Ha 3.5-14	4.3-17	60L/Ha 2.1-8.3	75L/Ha 1.7-6.7	F	151	<141 42%	<600 100%	Class	VMD	<141	<000	OldSS	VIVID	\141	<600	Class	VMD	<141	<000		
	0.450	1.75	1.73	3.8-15	2.8-11	2.3-9	1.8-7.2	F	148	44%	100%		225	21%	98%		05-	44	0./		05-		05::		
110 -015	0.481	2.00	1.98 2.48	4.3-17 4.5-18	3-12 3.3-13	2.4-9.6 2.8-11	1.9-7.7 2.2-8.6	F	145 141		100% 100%		218 205	23%	98% 98%	C	323 298	11% 14%	94%	C	368 346	7% 8%	92%		
Nozzles	0.590	3.00	2.97	5-20	3.5-14	3-12	2.4-9.4	F	137	53%	100%	F	195	29%	98%	C	279	16%	97%	С	329	10%	94%		
	0.637	3.50		5.5-22	3.8-15	3.3-13	2.5-10	F	134		100%	F	187	32%	98%	M	262	18%	98%	C	315	11%			
	0.681 0.722		3.96 4.46	5.8-23 6.3-25	4-16 4.3-17	3.5-14 3.5-14	2.8-11 3-12	F	132 129		100%	F	180 173	34%	98% 98%	M	248 226	20%	98% 99%	C	302 282	12% 14%	95% 96%		
	0.761	5.00	4.96	6.5-26	4.5-18	3.8-15	3-12	F	127	61%	100%	F	167	37%	98%	F	217	24%	99%	С	273	15%	96%		
	0.798		5.45 5.95	6.8-27 7.3-29	4.8-19 5-20	4-16 4.3-17	3.3-13 3.3-13	F	125 124		100% 100%	F	162 157	39% 40%	98% 98%	F	209 195	25% 27%	99% 100%	M	265 252	15% 17%			
	Flow	Boom	Tip	Sprayer S	peed (L/Ha	on 50cm s	pacing) @	ER1	10-02	#402	81-02	SR1	10-02	#4028	87-02	MR1	10-02	#402		-	10-02	#4028	86-02		
	L/min	BAR	BAR	40L/Ha	50L/Ha	60L/Ha	70L/Ha	Class	VMD		<600	Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600		
	0.554 0.598	1.50 1.75	1.47	4.3-17 4.5-18	3.3-13 3.5-14	2.8-11 3-12	2.4-9.5 2.5-10	F	171 166		100% 100%														-
110	0.639	2.00	1.97	4.8-19	3.8-15	3.3-13	2.8-11	F	161	39%	100%		221	22%	99%	С	317	11%	95%	VC	433	5%	82%		
-02 Nozzles	0.715 0.783	2.50 3.00		5.3-21 5.8-23	4.3-17 4.8-19	3.5-14 4-16	3-12 3.3-13	F	154 148		100% 100%		211 203	25% 27%	99% 99%	C	297 281	13% 15%	96% 97%	VC VC	412 394	6% 6%	85% 87%		
14022163	0.846	3.50		6.3-25	5-20	4.3-17	3.5-14	F	144		100%		196	29%	99%	M	267	17%	97%	C	378	7%	88%		\neg
	0.904		3.93	6.8-27	5.5-22	4.5-18	3.8-15	F	139		100%	F	190	30%	99%	M	256	18%	97%	С	364	8%	90%		
	0.959 1.011		4.42 4.92	7.3-29 7.5-30	5.8-23 6-24	4.8-19 5-20	4-16 4.3-17	F	136 132		100% 100%	F	185 180	32% 33%	99% 99%	M	237 229	21% 22%	98% 98%	C	339 328	9% 10%	91% 92%		-
	1.060	5.50	5.41	8-32	6.3-25	5.3-21	4.5-18	F	129	57%	100%	F	176	34%	99%	M	222	23%	98%	С	318	10%	93%		
	1.107	6.00	5.90 Tip	8.3-33 Sprayer S	6.8-27 peed (L/Ha	5.5-22	4.8-19	FD11	126 10-025		100% 31-025		172 10-025	35%	99%	F MR1	210 10-025	25% #4020	99%	C DR11	299 0-025	#4028	94%	IIR11	0-025
	Flow L/min	Boom BAR	BAR	50L/Ha	60L/Ha	70L/Ha	80L/Ha	Class		<141	<600				<600				<600		VMD		<600		VMD
	0.689	1.50	1.46	4.3-17	3.5-14	3-12	2.5-10	F	193	28%	100%														92-025
110	0.744	1.75 2.00	1.71	4.5-18 4.8-19	3.8-15 4-16	3.3-13 3.5-14	2.8-11 3-12	F	190 187		100% 100%	М	239	19%	98%	С	353	8%	90%	VC	437	5%	79%		
-025	0.890	2.50	2.44	5.3-21	4.5-18	3.8-15	3.3-13	F	183	30%	100%	М	228	21%	98%	С	337	10%	92%	VC	418	6%	83%	UC	568
Nozzles	0.974 1.053	3.00 3.50	2.92	5.8-23 6.3-25	4.8-19 5.3-21	4.3-17 4.5-18	3.8-15 4-16	F	179 177		100% 100%		219 212	23% 25%	98% 98%	C	322 310	11% 12%	93%	VC C	401 386	6% 7%	86% 88%	UC	546 526
	1.125	4.00	3.90	6.8-27	5.8-23	4.8-19	4.3-17	F	174		100%	F	205	26%	98%	o O	299	13%	95%	o o	373	8%	89%	UC	509
	1.193	4.50	4.39	7.3-29	6-24	5-20	4.5-18	F	172	31%	100%		200	28%	98%	С	280	15%	96%	С	350	9%	91%	XC	478
	1.258 1.319	5.00 5.50	4.87 5.36	7.5-30 8-32	6.3-25 6.5-26	5.5-22 5.8-23	4.8-19 5-20	F	170 168		100% 100%		195 190	29% 30%	98% 98%	M	271 263	16% 16%	96% 96%	C	340 331	9% 10%	92% 93%	XC	465 453
	1.378	6.00	5.85	8.3-33	7-28	6-24	5.3-21	F	166	31%	100%	F	186	31%	98%	М	249	18%	97%	С	314	10%	94%	XC	431
	Flow L/min	Boom BAR	Tip BAR	Sprayer S 60L/Ha	peed (L/Ha 75L/Ha		pacing) @ 120L/Ha		10-03				10-03 VMD		87-03 -600						10-03 VMD	#4028			10-03 VMD
	0.822	1.50		4-16	3.3-13		2.1-8.2		196	27%	99%		VIVID	<141	<000	OldSS	VIVID	<141	<000	OldSS	VIVID	<141			92-03
110	0.888	1.75	1.69	4.5-18	3.5-14	2.8-11	2.2-8.9	F	191	29%	99%		321	9%	94%	VC	400	COV	050/	VC	400	20/	700/		
110 -03	0.950 1.062			4.8-19 5.3-21	3.8-15 4.3-17	2.8-11 3.3-13	2.4-9.5 2.8-11	F	186 178		99% 98%		309 290	11% 13%	94%	VC C	403 376	6% 8%	85% 89%	XC	488 460		72% 77%	UC	612
Nozzles	1.163	3.00	2.89	5.8-23	4.8-19	3.5-14	3-12	F	172	35%	98%	С	275	15%	96%	С	354	9%	91%	VC	437	5%	81%	UC	581
	1.256 1.343			6.3-25	5-20	3.8-15	3.3-13	F	166		98%	M	262		97%	C		10%			417		84%		555 533
	1.424			6.8-27 7-28	5.3-21 5.8-23	4-16 4.3-17	3.3-13 3.5-14	F	161 157		97% 97%	M	250 240	18% 20%		C		12%	94% 95%	C	400 385		86% 87%	UC	533 513
	1.502	5.00	4.82	7.5-30	6-24	4.5-18	3.8-15	F	153	41%	97%	M	231	21%	98%	С	292	13%	95%	С	372	7%	88%	UC	495
	1.575 1.645			7.8-31 8.3-33	6.3-25 6.5-26	4.8-19 5-20	4-16 4-16	F	150 147		97% 96%			22% 23%					96% 96%	C	359 348		89% 90%		479 464
	1.043	0.00	J./9	0.0-00	0.5-20	J-20	4-10		147	4070	3070		_ LIU	L 2370	3070	IVI	210	1470	3070	U	J40	U 70	3070	ΛU	404

NOTE: 'SR, MR, DR, UR spray tips include pre-orifice(s). Pre-orifices are not interchangeable between different spray tips of different series. 'Shown application information is based on water @ 26.5°C in a controlled environment and should not be considered actual. Information is provided for comparison to other Combo-Jet® spray tips, for educational purposes only. Repeat testing results can vary.

COMBO-JET 110° Spray Tips - PWM Spray Systems

Comprehensive rate & speed charts for any nozzle spacing/speed/rate is available on Tip Wizard. Try it today!

Duty Cycle (Effective 'on time' of solenoid)

The duty cycle is the effective 'on time' of a PVMM solenoid. Generally speed ranges are based on a 25% - 100% duty cycle. When selecting a nozzle, often a duty cycle of 60-80% is recommended at typical speeds, providing flexibility for upper speed & turning situations, as well as slower spraying speeds. It is not advised to spray below 40% duty cycle.

Calculating Duty Cycle on Printed Charts (Useful for nozzle sizing & selection)
On Wilger printed charts, typically a SPEED RANGE is provided, but the duty cycle % is a dynamic factor
based on the sprayers travel speed. To calculate a duty cycle at a given travel speed, divide
CURRENT sprayer speed into max nozzle speed. (e.g. 15mph / 20mph max = 75% duty cycle)

upper spe	ceu & turrii	ny situa	uuis, as	Well as slowe	er spraying sp	eeus. It is iiot	auviseu io spi	ay Dei	UW 4U70	uuty cyt	ule.	CUI	NNEW I S	prayer	speeu II	ILO III	ax IIUZZ	ie shee	u. (e.y.	romp	11 / 20111	ри шах	= /5%	auty cyc	le)
	Flow	Boom	Tip	Sprayer S	peed (L/Ha	on 50cm s	pacing) @	ER1	10-04	#402	81-04	SR1	10-04	#4028	37-04	MR1	10-04	#4029	91-04	DR1	10-04	#4028	86-04	UR110	-04
	L/min	BAR	BAR	75L/Ha	100L/Ha	125L/Ha	150L/Ha	Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600		MD
110	1.168	1.75	1.64	4.8-19	3.5-14	2.8-11	2.3-9.3	M	234	20%	97%	0	000	100/	000/	VO	400	40/	000/	VO	F0.4	00/	CCN/	#40292	
110 -04	1.248	2.00	1.87 2.34	5-20	3.8-15 4.3-17	3-12 3.3-13	2.5-10	M	229 221	21%	97%	C	322	10% 12%	93% 94%	VC VC	429 399	4% 6%	82%	XC	524 492	3% 4%	66% 72%		60
Nozzles	1.396 1.529	3.00	2.81	5.5-22 6-24	4.5-17	3.8-15	2.8-11 3-12	F	214	24%	96%	C	303 287	14%	95%	C	374	7%	87% 90%	VC	467	4%	76%		5 <u>26</u> 598
IVOZZIOS	1.651	3.50	3.28	6.5-26	5-20	4-16	3.3-13	Ė	208	26%	96%	Č	273	15%	96%	C	353	8%	92%	VC	445	5%	79%		75
	1.765	4.00	3.75	7-28	5.3-21	4.3-17	3.5-14	F	203	27%	96%	M	262	17%	96%	Č	335	9%	93%	VC	426	5%	81%		554
	1.872	4.50	4.22	7.5-30	5.5-22	4.5-18	3.8-15	F	199	28%	96%	M	251	18%	97%	С	319	10%	94%	VC	410	6%	83%		36
	1.974	5.00	4.69	8-32	6-24	4.8-19	4-16	F	195	29%	96%	M	242	19%	97%	С	304	10%	95%	С	395	6%	85%	UC 5	520
	2.070	5.50	5.15	8.3-33	6.3-25	5-20	4.3-17	F	191	30%	95%	M	234	19%	97%	С	291	11%	95%	С	381	7%	86%		606
	2.162	6.00	5.62	8.8-35	6.5-26	5.3-21	4.3-17	F	188	30%	95%	M	226	20%	97%	С	280	11%	96%	C	369	7%	87%		193
	Flow L/min	Boom BAR	Tip BAR	Sprayer S 100L/Ha	peed (L/Ha 125L/Ha	on 50cm s 150L/Ha	pacing) @ 175L/Ha	ER1	10-05 VMD	#4028 <141	81-05	Class	10-05 VMD	#4028 <141			10-05 VMD	#4029 <141	91-05	Class	10-05 VMD	#4028 <141			-05 MD
	1.43	1.75	1.59	4.3-17	3.5-14	2.8-11	2.5-9.8	M	241	19%	<600 95%	Class	VIVID	< 141	<000	UldSS	VIVID	<141	<000	UldSS	VIVID	< 141	<000	#40292	
	1.53	2.00	1.81	4.5-18	3.8-15	3-12	2.8-11	M	234	21%	95%	С	371	7%	90%									1140232	. 00
110	1.72	2.50	2.26	5.3-21	4-16	3.5-14	3-12	M	224	23%	95%	Č	345	9%		XC	473	4%	74%	XC	522	2%	65%		
-05	1.88	3.00	2.72	5.8-23	4.5-18	3.8-15	3.3-13	F	215	26%	95%	С	324	11%	93%	VC	447	5%	78%	XC	505	3%	68%	UC 6	322
Nozzles	2.03	3.50	3.17	6-24	4.8-19	4-16	3.5-14	F	207	27%	95%	С	306	12%	94%	VC	424	5%	81%	XC	490	3%	70%		603
	2.17	4.00	3.62	6.5-26	5.3-21	4.3-17	3.8-15	F	201	29%	95%	C	291	14%	95%	VC	405	6%	83%	XC	478	3%	72%		86
	2.30	4.50	4.08	7-28	5.5-22	4.5-18	4-16	F	195	30%	95%	С	277	15%	96%	C	388	7%	84%	XC	467	3%	74%		71
ì	2.43	5.00	4.53 4.98	7.3-29	5.8-23	4.8-19	4.3-17	F	190	31%	95%	M	265 254	16%	96%	C	373	7%	86%	VC	457 448	4% 4%	75%		559
	2.54 2.66	5.50 6.00	5.43	7.8-31 8-32	6-24 6.5-26	5-20 5.3-21	4.3-17 4.5-18	F	185 181	32%	95% 95%	M	244	17% 17%	97% 97%	C C	359 346	7% 8%	87% 88%	VC VC	440	4%	77% 78%		548_ 538
	Flow	Boom	Tip		peed (L/Ha			_	10-06		81-06		10-06	#4028			10-06		91-06		10-06	#4028		UR110	
	L/min	BAR	BAR	125L/Ha	150L/Ha	175L/Ha	200L/Ha	Class	VMD	<141		Class		<141		Class		<141		Class			<600		MD
	1.69	1.75	1.52	4-16	3.3-13	3-12	2.5-10	С	277	15%	94%													#40292	
	1.80	2.00	1.74	4.3-17	3.5-14	3-12	2.8-11	M	270	16%	94%	VC	443	4%	80%										
	2.02	2.50	2.17	4.8-19	4-16	3.5-14	3-12	M	258	18%	94%	VC	408	6%	85%	XC	502	3%	69%	XC	559	2%	58%	III O	
110	2.21	3.00	2.61	5.3-21	4.5-18	3.8-15	3.3-13	M	249	20%	94%	C	380	8%		XC	481	4%	73%	XC	536	2%	63%		341
-06 Nozzles	2.39	3.50 4.00	3.04	5.8-23 6-24	4.8-19 5-20	4-16 4.3-17	3.5-14 3.8-15	M	241 234	21%	95% 95%	C	356 335	9% 10%	90% 92%	VC VC	463 447	4% 4%	76% 78%	XC	517 500	3%	66% 68%		620 602
INUZZIES	2.71	4.50	3.91	6.5-26	5.5-22	4.8-19	4-16	M	228	23%	95%	C	317	11%	93%	VC	434	5%	80%	XC	485	3%	70%		87
Į.	2.85	5.00	4.35	6.8-27	5.8-23	5-20	4.3-17	M	223	24%	95%	Č	301	12%	94%	VC	422	5%	82%	XC	472	3%	72%	_	73
	2.99	5.50	4.78	7.3-29	6-24	5.3-21	4.5-18	F	218	25%	95%	С	286	13%	94%	VC	411	5%	83%	XC	460	3%	73%		62
	3.12	6.00	5.22	7.5-30	6.3-25	5.3-21	4.8-19	F	213	26%	95%	С	272	14%	95%	С	400	5%	84%	VC	449	4%	75%		51
	Flow	Boom	Tip		peed (L/Ha			ER1	10-08		81-08		10-08		37-08				91-08		10-08		86-08	UR110	
	L/min	BAR	BAR	150L/Ha	200L/Ha	250L/Ha	300L/Ha	Class	VMD		<600	Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600	Class V	
	2.14	1.75 2.00	1.38	4.3-17 4.5-18	3.3-13 3.5-14	2.5-10 2.8-11	2.2-8.6	C	327 315	14% 15%	91%	UC	494	4%	58%									#40292	1-00
	2.56	2.50	1.97	5.3-21	3.8-15	3-12	2.5-10	C	295	17%	93%	XC	460	6%	65%	UC	539	4%	51%	UC	622	3%	39%		
110	2.81	3.00	2.37	5.5-22	4.3-17	3.3-13	2.8-11	Č	278	19%	94%	XC	432	7%	70%	ÜC	509	5%	57%	UC	593	3%	44%	UC 6	378
-08	3.03	3.50	2.76	6-24	4.5-18	3.8-15	3-12	М	264	20%	95%	XC	408	7%	74%	UC	483	5%	61%	UC	569	4%	47%	UC 6	351
Nozzles	3.24	4.00	3.16	6.5-26	4.8-19	4-16	3.3-13	M	252	21%	95%	XC	388	8%	77%	XC	461	6%	65%	UC	548	4%	50%		328
	3.44	4.50	3.55	7-28	5.3-21	4.3-17	3.5-14	M	241	22%	96%	VC	369	9%	79%	XC	441	6%	67%	UC	530	4%	52%		609
	3.62	5.00 5.50	3.95 4.34	7.3-29 7.5-30	5.5-22 5.8-23	4.3-17 4.5-18	3.5-14 3.8-15	M F	232 223	23% 24%	96% 96%	C	353 339	9% 10%	81% 83%	XC	424 408	6% 7%	69% 71%	UC	513 498	4% 4%	54% 56%		93 78
	3.97	6.00	4.74	8-32	6-24	4.8-19	4-16	Ė	215	25%	96%	C	325	11%	84%	XC	394	7%	73%	UC	485	5%	57%		65
	Flow	Boom	Tip	Sprayer S	peed (L/Ha	on 50cm s	pacing) @	ER1	10-10	#402	81-10		10-10	#4028	37-10		10-10	#4029	91-10	DR1	10-10	#4028	86-10		-10
	L/min	BAR	BAR	200L/Ha	250L/Ha	300L/Ha	350L/Ha	Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600		MD
	2.71	2.00	1.41	4-16	3.3-13	2.8-11	2.3-9.3	VC	360	10%	88%		400	=0/	==0/									#40292	-10
110	3.03	2.50 3.00	1.77 2.12	4.5-18 5-20	3.8-15 4-16	3-12 3.3-13	2.5-10	C	339 322	12% 14%	90%	XC	496 467	5% 6%	57% 63%	LIC	520	4%	E20/	LIC	607	E0/	58%		_
110 -10	3.58	3.50	2.47	5.5-22	4.3-17	3.5-13	2.8-11 3-12	C	308	16%	91%	XC	442	7%	67%	UC	495	5%	53% 57%	UC	594	5% 5%	56%	UC 6	678
Nozzles	3.83	4.00	2.82	5.8-23	4.5-18	3.8-15	3.3-13	Č	296	17%	92%	XC	420	8%	71%	XC	474	5%	60%	UC	582	5%	54%		354
	4.06	4.50	3.18	6-24	5-20	4-16	3.5-14	C	285	18%	92%	XC	401	8%	74%	XC	455	5%	62%	UC	572	5%	52%		333
	4.28	5.00	3.53	6.5-26	5.3-21	4.3-17	3.8-15	M	275	19%	93%	XC	384	9%	76%	XC	438	6%	65%	UC	563	6%	51%		316
	4.49		3.88	6.8-27	5.5-22	4.5-18	3.8-15	M	266	20%	93%	VC	368	9%	78%	XC	423	6%	66%	UC	555	6%	49%		000
	4.69		4.24	7-28	5.8-23 peed (L/Ha	4.8-19	4-16	M ED11	258		94%		354	9%		XC	409	6%	68%	UU	548		48%	UC 5	86
2	Flow L/min	Boom BAR	Tip BAR	250L/Ha	300L/Ha																				
	3.51		1.52	4.3-17	3.5-14	3-12	2.8-11		433		67%														
4	3.84	3.00	1.82	4.5-18	3.8-15	3.3-13	3-12	XC	412	9%	71%			4%	52%										
110	4.15		2.12	5-20	4.3-17	3.5-14	3-12	XC	395					4%	58%			4%	36%			3%	33%		
-125 Northe	4.44		2.42	5.3-21	4.5-18	3.8-15	3.3-13	XC	381		77%		467	5%	63%		614	4%	40%		645		35%		
Nozzles	4.71 4.96		2.73 3.03	5.8-23 6-24	4.8-19 5-20	4-16 4.3-17	3.5-14 3.8-15	VC VC		11% 11%			444 425	5% 6%	66% 69%		592 573	4% 4%	44% 46%		630 617	4% 4%	37% 39%		
	5.20		3.33	6.3-25	5.3-21	4.5-17	4-16	C		12%			425		72%			5%	49%		606	4%	40%		
	5.43		3.64	6.5-26	5.5-22	4.8-19	4-16	C		12%					74%			5%	51%			4%	41%		
	Flow	Boom	Tip	Sprayer S	peed (L/Ha	on 50cm s	pacing) @		10-15	#402	81-15		10-15	#4028	37-15	MR1	10-15	#4029	91-15		10-15	#4028	86-15		
	L/min	BAR	BAR	300L/Ha	400L/Ha	450L/Ha	500L/Ha	Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600		
	3.88		1.29	4-16	3-12	2.5-10	2.3-9.3		444	8%	63%														
110	4.26 4.60		1.55 1.81	4.3-17 4.5-18	3.3-13 3.5-14	2.8-11 3-12	2.5-10 2.8-11	XC	426 411	9%	66% 69%	LIC	558	4%	46%										
-15	4.00		2.07	5-20	3.8-15	3.3-12	3-12	XC	398	10%	71%		539	5%	51%	UC	608	4%	40%						
Nozzles	5.21		2.32	5.3-21	4-16	3.5-14	3.3-13	XC	386			ÜC	521	5%	54%	ÜÇ	594	4%		UC	645	4%	42%		
1	5.49	5.00	2.58	5.5-22	4-16	3.8-15	3.3-13	XC	376	12%	75%	UC	505	5%	57%	UC	582	4%	44%	UC	632	4%	44%		
N Comment	5.76	5.50	2.84	5.8-23	4.3-17	3.8-15	3.5-14	VC	367	12%	76%	UC	491	6%	59%	UC	571	5%	46%	UC	621	4%	46%		
	6.02		3.10	6-24	4.5-18	4-16	3.5-14	VC		12%				6%	61%			5%	47%	UC	610	4%	48%		
		Boom BAR	Tip BAR		peed (L/Ha						81-20				37-20 <600										
	L/min 5.22	3.50		400L/Ha 4-16	500L/Ha 3.3-13	600L/Ha 2.5-10	700L/Ha 2.3-9		502	<141 6%	55%	UIdSS	VIVIU	<141	<000	UldSS	VIVID	<141	<000						
110	5.59		1.50	4.3-17	3.3-13	2.8-11	2.4-9.6	UC		7%	57%														
-20	5.92		1.69	4.5-18	3.5-14	3-12	2.5-10	XC	475	7%	60%		545	5%	48%										
Nozzles	6.24	5.00	1.88	4.8-19	3.8-15	3-12	2.8-11	XC	464	8%	62%	UC	531	5%	52%										
	6.55		2.06	5-20	4-16	3.3-13	2.8-11	XC	454	8%	64%				54%			4%	42%						
	6.84	6.00	2.25	5.3-21	4-16	3.5-14	3-12	L XC	444	8%	65%	UC	506	6%	57%	UU	583	5%	44%						

COMBO-JET Metering Orifices & Fertilizer Streamer Caps

COMBO-JET Fertilizer Streamer Caps

Color-coded 3-hole streamer nozzles designed for streaming liquid fertilizer on consistent spacing to minimize leaf burn.

opaoing to n	mmmzo roar barri.
Operating Pressure	0.8bar - 4bar
O-rings	FKM (viton avail.
Material	Glass-reinforced Polypropylene

COMBO-JET Metering Orifices

Metering orifice snap into any Combo-Jet or Radialock caps to meter fertilizer or chemical flow rates.

UR series Orifices

If you are looking for replacement two-piece pre-orifices for Combo-Jet UR series spray tips, visit the UR series spray tip page for

		_				-	lo-	_			-	_	 ,	_		_	 	1		,	ᆕ
17cm	→	aterial	Polypropylen	_	3-Hole Streamer Cap		Η.	_		snap-in orifices					285-1 ire strain					0292	
			Glass-reinford	ear				J. 101 t 0tj	,	00 010 00	····patioi										48.

Combo-Jet	Metering		Flow	20cm C	Outlet S	pacing	25cm (Outlet S	pacing	30cm (Outlet S	pacing	38cm (Outlet S	pacing	50cm (Outlet S	pacing
Streamer Nozzle	Orifice	Pres. (BAR)	Rate					ion Rates										
Size	Size	(DAII)	L/min	8 kph	10kph	12kph												
Use		1.00	0.114	43L	34L	28L	34L	27L	23L	28L	23L	19L	22L	18L	15L	17L	14L	11L
Tip Wizard	-005	1.50	0.140	52L	42L	35L	42L	34L	28L	35L	28L	23L	28L	22L	18L	21L	17L	14L
to select	COMBO-JET	1.75	0.151	57L	45L	38L	45L	36L	30L	38L	30L	25L	30L	24L	20L	23L	18L	15L
metering	Metering	2.00	0.161	60L	48L	40L	48L	39L	32L	40L	32L	27L	32L	25L	21L	24L	19L	16L
orifices &	Orifice 40285-005	2.50	0.180	68L	54L	45L	54L	43L	36L	45L	36L	30L	36L	28L	24L	27L	22L	18L
streamers!	40205-005	3.00	0.197	74L	59L	49L	59L	47L	39L	49L	39L	33L	39L	31L	26L	30L	24L	20L
-4	8	1.00	0.153	57L	46L	38L	46L	37L	31L	38L	31L	25L	30L	24L	20L	23L	18L	15L
	-0067	1.50 1.75	0.187	70L 76L	56L 61L	47L 51L	56L 61L	45L 48L	37L 40L	47L 51L	37L 40L	31L 34L	37L 40L	30L 32L	25L 27L	28L 30L	22L 24L	19L 20L
WILGER	COMBO-JET	2.00	0.202	81L	65L	54L	65L	52L	40L 43L	54L	43L	36L	40L 43L	34L	28L	32L	26L	22L
	Metering Orifice	2.50	0.241	91L	72L	60L	72L	58L	48L	60L	48L	40L	48L	38L	32L	36L	29L	24L
TIP WIZARD	40285-007	3.00	0.265	99L	79L	66L	79L	63L	53L	66L	53L	44L	52L	42L	35L	40L	32L	26L
TRY IT FREE AT	0	1.00	0.228	85L	68L	57L	68L	55L	46L	57L	46L	38L	45L	36L	30L	34L	27L	23L
WWWWWIIGER		1.50	0.279	105L	84L	70L	84L	67L	56L	70L	56L	47L	55L	44L	37L	42L	34L	28L
App Store	-01	1.75	0.302	113L	90L	75L	90L	72L	60L	75L	60L	50L	60L	48L	40L	45L	36L	30L
GETITON	COMBO-JET Metering	2.00	0.322	121L	97L	81L	97L	77L	64L	81L	64L	54L	64L	51L	42L	48L	39L	32L
Google Play	Orifice	2.50	0.360	135L	108L	90L	108L	86L	72L	90L	72L	60L	71L	57L	47L	54L	43L	36L
	40285-01	3.00	0.395	148L	118L	99L	118L	95L	79L	99L	79L	66L	78L	62L	52L	59L	47L	39L
		1.00	0.342	128L	103L	85L	103L	82L	68L	85L	68L	57L	67L	54L	45L	51L	41L	34L
	-015	1.50	0.419	157L	126L	105L	126L	101L	84L	105L	84L	70L	83L	66L	55L	63L	50L	42L
9	COMBO-JET	1.75	0.452	170L	136L	113L	136L	109L	90L	113L	90L	75L	89L	71L	60L	68L	54L	45L
	Metering	2.00	0.484	181L	145L	121L	145L	116L	97L	121L	97L	81L	95L	76L	64L	73L	58L	48L
40443-015	Orifice 40285-015	2.50	0.541	203L	162L	135L	162L	130L	108L	135L	108L	90L	107L	85L 94L	71L 78L	81L	65L	54L
		3.00 1.00	0.592	222L 171L	178L 137L	148L 114L	178L 137L	142L 109L	118L 91L	148L 114L	118L 91L	99L 76L	117L 90L	72L	60L	89L 68L	71L 55L	59L 46L
	8	1.50	0.558	209L	168L	140L	168L	134L	112L	140L	112L	93L	110L	88L	73L	84L	67L	56L
	-02	1.75	0.603	226L	181L	151L	181L	145L	121L	151L	121L	101L	119L	95L	79L	90L	72L	60L
	COMBO-JET Metering	2.00	0.645	242L	193L	161L	193L	155L	129L	161L	129L	107L	127L	102L	85L	97L	77L	64L
	Orifice	2.50	0.721	270L	216L	180L	216L	173L	144L	180L	144L	120L	142L	114L	95L	108L	86L	72L
40443-02	40285-02	3.00	0.790	296L	237L	197L	237L	190L	158L	197L	158L	132L	156L	125L	104L	118L	95L	79L
		1.00	0.570	214L	171L	142L	171L	137L	114L	142L	114L	95L	112L	90L	75L	85L	68L	57L
	-025	1.50	0.698	262L	209L	174L	209L	168L	140L	174L	140L	116L	138L	110L	92L	105L	84L	70L
	COMBO-JET	1.75	0.754	283L	226L	188L	226L	181L	151L	188L	151L	126L	149L	119L	99L	113L	90L	75L
	Metering	2.00	0.806	302L	242L	201L	242L	193L	161L	201L	161L	134L	159L	127L	106L	121L	97L	81L
40443-025	Orifice 40285-025	2.50 3.00	0.901 0.987	338L 370L	270L 296L	225L 247L	270L 296L	216L 237L	180L 197L	225L 247L	180L 197L	150L 165L	178L 195L	142L 156L	119L 130L	135L 148L	108L 118L	90L 99L
		1.00	0.684	256L	205L	171L	205L	164L	137L	171L	137L	114L	135L	108L	90L	103L	82L	68L
		1.50	0.838	314L	251L	209L	251L	201L	168L	209L	168L	140L	165L	132L	110L	126L	101L	84L
	-03	1.75	0.905	339L	271L	226L	271L	217L	181L	226L	181L	151L	179L	143L	119L	136L	109L	90L
	COMBO-JET Metering	2.00	0.967	363L	290L	242L	290L	232L	193L	242L	193L	161L	191L	153L	127L	145L	116L	97L
	Orifice	2.50	1.081	405L	324L	270L	324L	259L	216L	270L	216L	180L	213L	171L	142L	162L	130L	108L
40443-03	40285-03	3.00	1.184	444L	355L	296L	355L	284L	237L	296L	237L	197L	234L	187L	156L	178L	142L	118L
	@	1.00	0.91	342L	274L	228L	274L	219L	182L	228L	182L	152L	180L	144L	120L	137L	109L	91L
	-04	1.50	1.12	419L	335L	279L	335L	268L	223L	279L	223L	186L	220L	176L	147L	168L	134L	112L
	COMBO-JET	1.75	1.21	452L	362L	302L	362L	289L	241L	302L	241L	201L	238L	190L	159L	181L	145L	121L
	Metering	2.00 2.50	1.29 1.44	484L 541L	387L 432L	322L 360L	387L 432L	309L 346L	258L 288L	322L 360L	258L 288L	215L 240L	254L 285L	204L 228L	170L 190L	193L 216L	155L 173L	129L 144L
40443-04	Oritice 40285-04	3.00	1.58	592L	474L	395L	474L	379L	316L	395L	316L	263L	312L	249L	208L	237L	190L	158L
		1.00	1.14	427L	342L	285L	342L	274L	228L	285L	228L	190L	225L	180L	150L	171L	137L	114L
		1.50	1.40	523L	419L	349L	419L	335L	279L	349L	279L	233L	275L	220L	184L	209L	168L	140L
	-05	1.75	1.51	565L	452L	377L	452L	362L	302L	377L	302L	251L	298L	238L	198L	226L	181L	151L
	COMBO-JET Metering	2.00	1.61	604L	484L	403L	484L	387L	322L	403L	322L	269L	318L	254L	212L	242L	193L	161L
40442.05	Orifice	2.50	1.80	676L	541L	451L	541L	432L	360L	451L	360L	300L	356L	285L	237L	270L	216L	180L
40443-05	40285-05	3.00	1.97	740L	592L	494L	592L	474L	395L	494L	395L	329L	390L	312L	260L	296L	237L	197L
	9	1.00	1.37	513L	410L	342L	410L	328L	274L	342L	274L	228L	270L	216L	180L	205L	164L	137L
	-06	1.50	1.68	628L	503L	419L	503L	402L	335L	419L	335L	279L	331L	264L	220L	251L	201L	168L
	COMBO-JET	1.75 2.00	1.81	678L 725L	543L 580L	452L 484L	543L 580L	434L 464L	362L	452L 484L	362L 387L	302L 322L	357L 382L	286L 305L	238L 254L	271L	217L 232L	181L 193L
	Metering Orifice	2.50	2.16	811L	649L	541L	649L	519L	387L 432L	541L	432L	360L	427L	341L	285L	290L 324L	259L	216L
40443-06	40285-06	3.00	2.10	888L	711L	592L	711L	569L	474L	592L	474L	395L	468L	374L	312L	355L	284L	237L
		0.00	2.01	UUUL	/ · · I L	UUZL	/ / /	JUJL	7/7L	UULL		UUUL		0240		•	2046	

Spending too much time unclogging fertilizer nozzles?

Use COMBO-JET snap-in slotted strainers to provide an extra layer of protection from plugging

40249-00

COMBO-JET_® Metering Orifices & Fertilizer Streamer Caps

Common Liquid Weight, Specific Gravity, and Conversion Factor for Flow Rate:

Required Flow Rate x Conversion Factor = Flow Rate adjusted for density

[WATER] 8.34 lbs/gal Specific Gravity 1.0 Conversion Factor: 1.00 [28-0-0] 10.67 lbs/gal Specific Gravity 1.28 Conversion Factor: 1.13 [10-34-0] 11.65 lbs/gal Specific Gravity 1.28 Conversion Factor: 1.18

Combo-Jet	Metering	Pres.	Flow							i		pacing	1			i		-
Streamer Nozzle Size	Orifice Size	(BAR)	Rate						<u> </u>			(L/HA) @			<u> </u>			_
Size	SIZE		L/min	8 kph	10kph	12kph	8 kph	10kph	12kph	8 kph	10kph	12kph	8 kph	10kph	12kph	8 kph	10kph	12kp
	8	1.00	1.82	684L	547L	456L	547L	438L	365L	456L	365L	304L	360L	288L	240L	274L	219L	182
	Short*	1.50	2.23	838L	670L	558L	670L	536L	447L	558L	447L	372L	441L	353L	294L	335L	268L	223
	COMBO-JET	1.75	2.41	905L	724L	603L	724L	579L	482L	603L	482L	402L	476L	381L	317L	362L	289L	24
	[Short] 40285-08s	2.00	2.58	967L	774L	645L	774L	619L	516L	645L	516L	430L	509L	407L	339L	387L	309L	258
	[Long]	2.50	2.88	1081L	865L	721L	865L	692L	577L	721L	577L	481L	569L	455L	379L	432L	346L	288
40443-08	40285-08	3.00	3.16	1184L	948L	790L	948L	758L	632L	790L	632L	526L	623L	499L	416L	474L	379L	316
	0 1	1.00	2.28	855L	684L	570L	684L	547L	456L	570L	456L	380L	450L	360L	300L	342L	274L	228
	Short*	1.50	2.79	1047L	838L	698L	838L	670L	558L	698L	558L	465L	551L	441L	367L	419L	335L	279
10 TO 10	COMBO-JET	1.75	3.02	1131L	905L	754L	905L	724L	603L	754L	603L	503L	595L	476L	397L	452L	362L	302
	[Short]	2.00	3.22	1209L	967L	806L	967L	774L	645L	806L	645L	537L	636L	509L	424L	484L	387L	322
	40285-10s [Long]	2.50	3.60	1352L	1081L	901L	1081L	865L	721L	901L	721L	601L	711L	569L	474L	541L	432L	36
40443-10	40285-10	3.00	3.95	1481L	1184L	987L	1184L	948L	790L	987L	790L	658L	779L	623L	519L	592L	474L	39
П		1.00	2.85	1068L	855L	712L	855L	684L	570L	712L	570L	475L	562L	450L	375L	427L	342L	28
	Short*	1.50	3.49	1309L	1047L	872L	1047L	838L	698L	872L	698L	582L	689L	551L	459L	523L	419L	349
0_0	Short* -125	1.75	3.77	1413L	1131L	942L	1131L	905L	754L	942L	754L	628L	744L	595L	496L	565L	452L	37
9 2	COMBO-JET [Short]	2.00	4.03	1511L	1209L	1007L	1209L	967L	806L	1007L	806L	672L	795L	636L	530L	604L	484L	40
	40285-125s	2.50	4.03	1689L	1352L	1126L	1352L	1081L	901L	1126L	901L	751L	889L	711L	593L	676L	541L	45
40443-125	[Long] 40285-125	3.00	4.94	1851L	1481L	1234L	1481L	1184L	987L	1234L	987L	823L	974L	779L	649L	740L	592L	49
	(IIII)			•														•
		1.00	3.42	1282L	1026L	855L	1026L	821L	684L	855L	684L	570L	675L	540L	450L	513L	410L	34
		1.50	4.19	1570L	1256L	1047L	1256L	1005L	838L	1047L	838L	698L	826L	661L	551L	628L	503L	41
		1.75	4.52	1696L	1357L	1131L	1357L	1086L	905L	1131L	905L	754L	893L	714L	595L	678L	543L	45
	-15 COMBO-JET	2.00	4.84	1813L	1451L	1209L	1451L	1160L	967L	1209L	967L	806L	954L	763L	636L	725L	580L	48
40443-15	[Long]	2.50	5.41	2027L	1622L	1352L	1622L	1297L	1081L	1352L	1081L	901L	1067L	854L	711L	811L	649L	54
40443-13	40285-15	3.00	5.92	2221L	1777L	1481L	1777L	1421L	1184L	1481L	1184L	987L	1169L	935L	779L	888L	711L	59
	- 6	1.00	4.56	1710L	1368L	1140L	1368L	1094L	912L	1140L	912L	760L	900L	720L	600L	684L	547L	45
- California		1.50	5.58	2094L	1675L	1396L	1675L	1340L	1117L	1396L	1117L	931L	1102L	882L	735L	838L	670L	55
	- 8	1.75	6.03	2262L	1809L	1508L	1809L	1447L	1206L	1508L	1206L	1005L	1190L	952L	794L	905L	724L	60
	-20	2.00	6.45	2418L	1934L	1612L	1934L	1547L	1289L	1612L	1289L	1075L	1272L	1018L	848L	967L	774L	64
	COMBO-JET [Long]	2.50	7.21	2703L	2162L	1802L	2162L	1730L	1442L	1802L	1442L	1201L	1423L	1138L	948L	1081L	865L	72
40443-20	40285-20	3.00	7.90	2961L	2369L	1974L	2369L	1895L	1579L	1974L	1579L	1316L	1558L	1247L	1039L	1184L	948L	79
		1.00	5.70	2137L	1710L	1425L	1710L	1368L	1140L	1425L	1140L	950L	1125L	900L	750L	855L	684L	57
	- 111	1.50	6.98	2617L	2094L	1745L	2094L	1675L	1396L	1745L	1396L	1163L	1377L	1102L	918L	1047L	838L	69
		1.75	7.54	2827L	2262L	1885L	2262L	1809L	1508L	1885L	1508L	1256L	1488L	1190L	992L	1131L	905L	75
	-25	2.00	8.06	3022L	2418L	2015L	2418L	1934L	1612L	2015L	1612L	1343L	1591L	1272L	1060L	1209L	967L	80
	COMBO-JET	2.50	9.01	3379L	2703L	2253L	2703L	2162L	1802L	2253L	1802L	1502L	1778L	1423L	1186L	1352L	1081L	90
	[Long] 40285-25	3.00	9.87	3701L	2961L	2468L	2961L	2369L	1974L	2468L	1974L	1645L	1948L	1558L	1299L	1481L	1184L	98
		1.00	6.84	2564L	2051L	1710L	2051L	1641L	1368L	1710L	1368L	1140L	1350L	1080L	900L	1026L	821L	68
		1.50	8.38	3141L	2513L	2094L	2513L	2010L	1675L	2094L	1675L	1396L	1653L	1322L	1102L	1256L	1005L	83
		1.75	9.05	3392L	2714L	2262L	2714L	2171L	1809L	2262L	1809L	1508L	1785L	1428L	1190L	1357L	1086L	90
	-30	2.00	9.67	3627L	2901L	2418L	2901L	2321L	1934L	2418L	1934L	1612L	1909L	1527L	1272L	1451L	1160L	96
	COMBO-JET	2.50	10.81	4055L	3244L	2703L	3244L	2595L	2162L	2703L	2162L	1802L	2134L	1707L	1423L	1622L	1297L	108
	[Long] 40285-30	3.00	11.84	4442L	3553L	2961L	3553L	2843L	2369L	2961L	2369L	1974L	2338L	1870L	1558L	1777L	1421L	118
	1200-00	1.00	9.12	3419L	2735L	2279L	2735L	2188L	1824L	2279L	1824L	1520L	1800L	1440L	1200L	1368L	1094L	91
	111	1.50	11.17	4188L	3350L	2792L	3350L	2680L	2233L	2792L	2233L	1861L	2204L	1763L	1469L	1675L	1340L	11.
		1.75	12.06	4523L	3618L	3015L	3618L	2895L	2412L	3015L	2412L	2010L	2381L	1904L	1587L	1809L	1447L	120
	-40	2.00	12.89	4835L	3868L	3224L	3868L	3095L	2579L	3224L	2579L	2149L	2545L	2036L	1697L	1934L	1547L	128
	COMBO-JET	2.50	14.42	5406L	4325L		4325L											1
	[Long] 40285-40																	
	40265-40	3.00	15.79	5922L	4738L	3948L	4738L	3790L	3158L	3948L	3158L	2632L	3117L	2494L	2078L	2369L	1895L	157
		1.00	11.40	4274L	3419L	2849L	3419L	2735L	2279L	2849L	2279L	1900L	2249L	1800L	1500L	1710L	1368L	
		1.50	13.96	5234L	4188L	3490L	4188L	3350L	2792L	3490L		2326L	2755L	2204L		2094L	1675L	1
		1.75	15.08	5654L	4523L	3769L	4523L	3618L	3015L	3769L		2513L	2976L	2381L	1984L	2262L	1809L	150
	-50 COMBO-JET	2.00	16.12	6044L	4835L	4029L	4835L	3868L	3224L	4029L		2686L	3181L	2545L		2418L	1934L	-
			1000	6758L	5406L	4505L	5406L	4325L	3604L	4505L	3604L	3003L	3557L	2845L	2371L	2703L	2162L	180
	[Long] 40285-50	2.50 3.00	18.02 19.74	7403L		4935L		4738L	3948L				3896L	3117L				197

COMBO-JET® Narrow-Angle Nozzles for Spot Spraying

A full selection of narrow angle spray nozzles for use in specialty applications that require a narrow, but thick pattern. These nozzles are fully compatible with PWM spray systems, and other optical spray systems. Contact factory for availability.

COMBO-JET® ER & DX Series of 20°, 40° & 60° Spray Nozzles for Optical & Spot Spraying

The DX (drift redux) & ER (fine spray) narrow angle spray nozzles.

		•			d angles			۸ -	Spray Hoz	
Nozzle	Flow	Boom	Tip	Applic	ation Rate	in Litres/F	lectare			Assessed
Size	Rate L/min	BAR	BAR		m Nozzle S I Range in			20° Nozzles	40° Nozzles	60° Nozzles
	Flow	Boom	Tip		ange (25-1			20° Drift	40° Drift	60° Drift
	L/min	BAR	BAR	75L/Ha	100L/Ha	125L/Ha	150L/Ha	Reduction	Reduction	Reduction
-015	0.48	2.0	1.98 2.48	3.8-15 4.3-17	3-12 3.3-13	2.3-9.2 2.5-10	1.9-7.7 2.2-8.6	DX20-015 #42220-015	DX40-015 #42240-015	DX60-015 #42260-015
-013	0.59	3.0	2.97	4.8-19	3.5-14	2.8-11	2.4-9.4	20° Fine Spray		
	0.68	4.0	3.96	5.5-22	4-16	3.3-13	2.8-11	ER20-015	ER40-015	ER60-015
	0.76	5.0	4.96	6-24	4.5-18	3.8-15	3-12	#42120-015	#42140-015	#42160-015
	Flow L/min	Boom	Tip BAR	100L/Ha	ange (25-1 125L/Ha	150L/Ha	175L/Ha	20° Drift Reduction	40° Drift Reduction	60° Drift Reduction
	0.64	2.0	1.97	3.8-15	3-12	2.5-10	2.2-8.8	DX20-02	DX40-02	DX60-02
-02	0.71	2.5	2.46	4.3-17	3.5-14	2.8-11	2.5-9.8	#42220-02	#42240-02	#42260-02
	0.78	3.0	2.95	4.8-19 5.5-22	3.8-15 4.3-17	3.3-13	2.8-11 3-12		40° Fine Spray	60° Fine Spray ER60-02
	0.90 1.01	4.0 5.0	3.93 4.92	6-24	4.8-19	3.5-14 4-16	3.5-14	ER20-02 #42120-02	ER40-02 #42140-02	#42160-02
	Flow	Boom	Tip		ange (25-1			20° Drift	40° Drift	60° Drift
	L/min	BAR	BAR	125L/Ha	150L/Ha		200L/Ha	Reduction	Reduction	Reduction
005	0.80	2.0	1.95	3.8-15	3.3-13	2.8-11	2.4-9.5	DX20-025 #42220-025	DX40-025 #42240-025	DX60-025 #42260-025
-025	0.89 0.97	2.5 3.0	2.44	4.3-17 4.8-19	3.5-14 4-16	3-12 3.3-13	2.8-11 3-12	20° Fine Spray		60° Fine Spray
	1.13	4.0	3.90	5.5-22	4.5-18	3.8-15	3.5-14	ER20-025	ER40-025	ER60-025
	1.26	5.0	4.87	6-24	5-20	4.3-17	3.8-15	#42120-025	#42140-025	#42160-025
	Flow	Boom	Tip		ange (25-1			20° Drift	40° Drift	60° Drift
	L/min 0.95	BAR 2.0	1.93	125L/Ha 4.5-18	150L/Ha 3.8-15	175L/Ha 3.3-13	200L/Ha 2.8-11	Reduction DX20-03	Reduction DX40-03	Reduction DX60-03
-03	1.06	2.5	2.41	5-20	4.3-17	3.8-15	3.3-13	#42220-03	#42240-03	#42260-03
00	1.16	3.0	2.89	5.5-22	4.8-19	4-16	3.5-14		40° Fine Spray	
	1.34	4.0	3.86	6.5-26	5.3-21	4.5-18	4-16	ER20-03	ER40-03	ER60-03
	1.50	5.0	4.82	7.3-29	6-24	5.3-21	4.5-18	#42120-03	#42140-03	#42160-03
	Flow L/min	Boom BAR	Tip BAR	150L/Ha	ange (25-1 200L/Ha	250L/Ha	275L/Ha	20° Drift Reduction	40° Drift Reduction	60° Drift Reduction
	1.25	2.0	1.87	5-20	3.8-15	3-12	2.8-11	DX20-04	DX40-04	DX60-04
-04	1.40	2.5	2.34	5.5-22	4.3-17	3.3-13	3-12	#42220-04	#42240-04	#42260-04
	1.53	3.0	2.81	6-24	4.5-18	3.8-15	3.3-13		40° Fine Spray	
	1.77 1.97	4.0 5.0	3.75 4.69	7-28 8-32	5.3-21 6-24	4.3-17 4.8-19	3.8-15 4.3-17	ER20-04 #42120-04	ER40-04 #42140-04	ER60-04 #42160-04
	Flow	Boom	Tip		ange (25-1			20° Drift	40° Drift	60° Drift
	L/min	BAR	BAR	175L/Ha	200L/Ha	250L/Ha	300L/Ha	Reduction	Reduction	Reduction
0.5	1.53	2.0	1.81	5.3-21	4.5-18	3.8-15	3-12	DX20-05	DX40-05	DX60-05
-05	1.72 1.88	2.5 3.0	2.26	6-24 6.5-26	5.3-21 5.8-23	4-16 4.5-18	3.5-14	#42220-05	#42240-05 40° Fine Spray	#42260-05
	2.17	4.0	3.62	7.5-30	6.5-26	5.3-21	4.3-17	ER20-05	ER40-05	ER60-05
	2.43	5.0	4.53	8.3-33	7.3-29	5.8-23	4.8-19	#42120-05	#42140-05	#42160-05
	Flow	Boom	Tip		ange (25-1			20° Drift	40° Drift	60° Drift
	L/min 1.80	2.0	1.74	200L/Ha 5.5-22	250L/Ha 4.3-17	300L/Ha 3.5-14	350L/Ha 3-12	Reduction DX20-06	Reduction DX40-06	Reduction DX60-06
-06	2.02	2.5	2.17	6-24	4.8-19	4-16	3.5-14	#42220-06	#42240-06	#42260-06
	2.21	3.0	2.61	6.8-27	5.3-21	4.5-18	3.8-15	20° Fine Spray	40° Fine Spray	60° Fine Spray
	2.55	4.0	3.48	7.8-31	6-24	5-20	4.3-17	ER20-06	ER40-06	ER60-06
	2.85 Flow	5.0 Boom	4.35 Tip	8.5-34 Speed Pr	6.8-27 ange (25-1	5.8-23	5-20	#42120-06	#42140-06	#42160-06
	L/min	BAR	BAR	300L/Ha	350L/Ha	400L/Ha	450L/Ha	20° Drift Reduction	40° Drift Reduction	60° Drift Reduction
	2.29	2.0	1.58	4.5-18	4-16	3.5-14	3-12	DX20-08	DX40-08	DX60-08
-08	2.56	2.5	1.97	5.3-21	4.5-18	3.8-15	3.5-14	#42220-08	#42240-08	#42260-08
	2.81	3.0	2.37	5.5-22	4.8-19	4.3-17	3.8-15		40° Fine Spray ER40-08	60° Fine Spray ER60-08
	3.24 3.62	4.0 5.0	3.16 3.95	6.5-26 7.3-29	5.5-22 6.3-25	4.8-19 5.5-22	4.3-17 4.8-19	ER20-08 #42120-08	#42140-08	#42160-08
	Flow	Boom	Tip		ange (25-1			20° Drift	40° Drift	60° Drift
	L/min	BAR	BAR	400L/Ha		500L/Ha	600L/Ha	Reduction	Reduction	Reduction
10	2.71	2.0	1.41	4-16	3.5-14	3.3-13	2.8-11	DX20-10	DX40-10	DX60-10
-10	3.03	2.5 3.0	1.77 2.12	4.5-18 5-20	4-16 4.5-18	3.8-15 4-16	3-12 3.3-13	#42220-10 20° Fine Spray	#42240-10 40° Fine Spray	#42260-10 60° Fine Spray
	3.83	4.0	2.82	5.8-23	5-20	4.5-18	3.8-15	ER20-10	ER40-10	ER60-10
	4.28	5.0	3.53	6.5-26	5.8-23	5.3-21	4.3-17	#42120-10	#42140-10	#42160-10
	Flow L/min	Boom	Tip		ange (25-1			20° Drift	40° Drift	60° Drift
	L/min 3.14	BAR 2.0	BAR 1.21	500L/Ha 3.8-15	600L/Ha 3.3-13	700L/Ha 2.8-11	800L/Ha 2.4-9.4	Reduction DX20-125	Reduction DX40-125	Reduction DX60-125
-125	3.51	2.5	1.52	4.3-17	3.5-14	3-12	2.8-11	#42220-125	#42240-125	#42260-125
	3.84	3.0	1.82	4.5-18	3.8-15	3.3-13	3-12		40° Fine Spray	60° Fine Spray
	4.44	4.0	2.42	5.3-21	4.5-18	3.8-15	3.3-13	ER20-125	ER40-125 #42140-125	ER60-125
	4.96	5.0	3.03 Eor la	rner sizes	of nozzles	4.3-17	3.8-15	#42120-125 ties, please conta		#42160-125
1 10 000	at aprox	ina ova						a varioty of pozz		turn to ounnort

As spot-spraying systems continue to develop, Wilger expects to have a variety of nozzles developed in turn to support the new improvements to maximize effectiveness.

Spot & Broadcast spraying with the same nozzles? Consider **COMBO-JET**_® 80° Nozzles Using 80° drift reduction nozzles can be an effective way to use broadcast (with overlap) and spot spray mode with the same nozzles.

What is optical spot spraying?

Optical spraying systems, or spot spraying based on optical feedback is used for a variety of purposes and with different modes of action.

Spray on Green

Optics identify 'green' targets in field, and sprays them.

- Pre-plant spraying to clear out established weeds
- Spraying fungicide on plants in field, ignoring dirt.
- Using modes of actions to manage resistant weeds.
- Foliar fertilizer applications on plant only

Green on Green

Optics & computer differentiate plants in field and spray target plants only.

- Spraying weeds ONLY, avoiding planted crop.
- Spraying crop with fungicide, ignoring weeds.
- Spraying different weeds with different chemicals

While the potential benefits of **Green on Green** provide a great deal of flexibility & means to use cost-prohibitive herbicide regimens, the means to differentiate plants a application time and development of the computing power and learning mechanisms are continually under development.

What is the **DX series** spray nozzle?

Effectively through development of the narrow angle nozzles, there is a relative sweet spot for consistent coverage and maintaining a reasonable level of driftable fines.

Since optical/spot sprayers are typically subject to minimized speeds and narrow spacing, Wilger developed the DX series as a sweet-spot between drift reduction and coverage in those nozzle sizes and angles

Are they still PWM-spray system compatible? Absolutely!

PWM APPROVED

Speed up spray nozzle responsivity with INSTA-JET

Faster nozzle pattern generation, faster shut-off, and increased time with an optimal spray pattern are ways to tune in your spot spraying application.

The Insta-jet insert helps improve responsiveness of your nozzle by significantly reducing the amount of cavity space within a nozzle body outlet, such that there is less cavity space to charge between pulses. This means faster ON and OFF time of the nozzle's spray, leaving for more time being optimally

snap-in insert

spraying

The INSTA-JET insert snaps into any COMBO-JET nozzle¹ to handle as one piece.

¹except UR series, or nozzles using adapters that do not allow for use of a snap-in strainer/insta-jet

COMBO-JET_® Cap Adapters

Order #####-V0 for viton o-ring assemblies

Wilger manufacturers a variety of adapters to adapt Wilger nozzles to other brands of nozzle bodies (e.g. Teejet, Hypro, Arag, etc), provide new functions, or a mix thereof. All adapters self-align cap to common nozzle offset angle.

COMBO-JET 50/30 Adapter

40442-00 COMBO-JET outlet to 30° & 50° front/back COMBO-JET outlets -Quarter Turn-

COMBO-JET 30/30 Y-Adapter

40440-00 COMBO-JET outlet to dual 30° front/back COMBO-JET outlets -Quarter Turn-

30° COMBO-JET to COMBO-JET

40219-00 COMBO-JET to COMBO-JET, 30° incline (front or back) -Quarter Turn-

COMBO-JET DOUBLE-DOWN

40441-00 COMBO-JET outlet to dual COMBO-JET outlets straight down -Quarter Turn-

Square Lug to COMBO-JET

40204-00 Converts Square Lug (e.g. Teejet/Hypro) Outlet to COMBO-JET -TWIST-LOCK-

Square Lug to DOUBLE-DOWN

40206-00 Converts Square Lug Outlet to COMBO-JET Double-Down Outlets -TWIST-LOCK-

COMBO-JET to Square Lug

40203-00 Converts COMBO-JET Outlet to Square Lug (e.g. Teejet/Hypro) -Quarter Turn-

30° COMBO-JET to Square Luq

40220-00 COMBO-JET to Square Lug, 30° incline (front or back) -Quarter Turn-

JACTO to COMBO-JET

40207-00 Converts Jacto Outlet to COMBO-JET -Quarter Turn-

AGRIFAC to COMBO-JET

40205-00 Converts Agrifac Outlet to COMBO-JET Easy nozzle sleevesnaps into Combo-Jet caps

AGRIFAC to DOUBLE-DOWN

40203-00 + 40441-00 Converts Agrifac Outlet to Double COMBO-JET -Quarter Turn-

AGRIFAC to 30/30 Y-Adapter

HARDI to COMBO-JET

40213-00 Converts Agrifac Outlet to COMBO-JET Y-adapter Outlets -TWIST-LOCK-

Y-Adapter or 'Double-Down' mode?

To split up a high volume, coarse spray nozzle into two more meaningful spray qualities. Y-adapter is excellent for vertical growing targets. double-down is better into thick canopies.

Read the 'Tip Guide for Double Nozzle Spraving'

PWM-Ready *Double Nozzle Spraving*

Just add the two nozzle sizes together for your PWM nozzle flow For example: MR110-04 + SR110-05

*PWM solenoid pressure drop would e based on combined size (e.d

40202-00 HARDI Outlet to COMBO-JET -Semi-permanent snap on adapter-

Radialock Slotted Caps & ER spray tip capsules (80° & 110°)

Wilger manufacturers caps for using flanged spray tip capsules onto any Combo-Jet nozzle outlets. Gasket is required.

40160-00 Rubber Gasket for Radialock slotted caps 40160-V0 for Vitor

3/8" Slot

Teejet/Hypro spray tips 40269-05

¹May be available in colors: Grey (-09), Ora

1/2" Round Slot

Brown (-07), Blue (-06),

7/16" Wide Slot

Teejet/Hypro spray tips2 40276-05

HARDI Tip Slot

For HARDI spray tips2

²May be available in colors*: **Black (-05), Yellow (-04), G Red (-01)** *Check factory availability of non-black colors. ·04), Green (-03), Willia (+02),

ER Stainless spray tips with 3/8" capsules

40170-04

Optimal Height 75cm

40169-04

low (-04), Green (-03), Will (602), Red (-01)

Optimal Height 50cm

Use with #40269-05 + #40160-00 gasket Looking for narrower 20°, 40° or 60° ER nozzle capsules? Contact Wilger.

Tip Size	-005	-0067	-01	-015	-02	-025	-03	-04	-05	-06	-08
80° ER Ti	p ER80-005	ER80-007	ER80-01	ER80-015	ER80-02	ER80-025	ER80-03	ER80-04	ER80-05	ER80-06	ER80-08
Part #	40170-005	40170-007	40170-01	40170-015	40170-02	40170-025	40170-03	40170-04	40170-05	40170-06	40170-08
110° ER T	ip -	-	ER110-01	ER110-015	ER110-02	ER110-025	ER110-03	ER110-04	ER110-05	ER110-06	ER110-08
Part #	-	-	40169-01	40169-015	40169-02	40169-025	40169-03	40169-04	40169-05	40169-06	40169-08

For flow rate & spray quality charts, and more information on ER spray tips, reference the 80° and 110° spray nozzle charts.

COMBO-JET_® Caps, Adapters & Strainers

Wilger manufacturers a variety of caps that are used for metering flow rates (through hose barb, push-in tube, or streamer caps) or used as accessories for other spraying or plumbing functions.

Plug Caps

Caps unused Combo-Jet nozzle body outlets

ιp
Cap Only
40272-05

Hose Barb Caps

40260-00

40261-00

Stainless

Steel for

Chemical

Spraying

40250-00

Mesh Size

100 mesh

25 mesh

Hose barb caps can be used as manifold plumbing parts or for metering flow.

	Hose Barb Caps	
Barb Size	FKM O-ring Assy	Cap Only
1/8"	40420-B5	40420-05
1/4"	40422-B5	40422-05
3/8"	40424-B5	40424-05
1/2"	40426-B5	40426-05

To use cap for metering, order CAP ONLY, with o-ring and 40285-## metering orifice.

COMBO-JET Cap O-rings

13mm x 3mm o-ring

for COMBO-JET®

Caps & Spray Tips

COMBO-JET Snap-in Strainers Combo-jet strainers snap into a metering orifice or cap for an assembly that handles as 'one-piece'

40251-00 40249-00

40249-00

40248-00

Slotted Strainer | Stainless Mesh

use 100 mesh for -02 nozzles o

Adapter for non-metering caps Seal adapter is used to keep o-ring in place if metering orifice

is NOT used

Slotted

Plastic

Strainer

for

#40251-00

#40250-00 use 50 mesh for -025 or larger nozzles

Push-in-Tube Caps

Quick connect tube caps seal on the outside diameter of a tube, and used as manifold plumbing parts or for metering flow.

Quick Connect/Push-in-tube Caps				
Tube Size (O.D.) FKM O-ring Assy Cap Only				
1/4"	40435-B5	40435-05		
5/16"	40437-B5	40437-05		
3/8"	40436-B5	40436-05		

To use cap for metering, order CAP ONLY, with o-ring and 40285-## metering orifice.

Threaded Outlet Adapters

Combo-Jet Cap with NPT-F threaded port

Th	readed Outlet Cap	ps
Thread Size	FKM O-ring Assy	Cap Only
1/8" NPT-F	40277-B5	40277-05
1/4" NPT-F	40273-B5	40273-05
45° 1/4" NPT-F	40274-B5	40274-05

For applications that do not required liquid metering orifices (e.g. plumbing manifolds), the -B5 is an assembly that includes an o-ring (#40260-00), seal adapter (#40261-00 in lieu of orifice), and cap.

Hose Drop & Extension Caps

Hose Drop Caps are used to feed or spray down below a canopy to minimize crop contact.

Outlet	Length	Part #
Combo-Jet	5cm	40210-00
to Combo-Jet	12cm	40211-00
Combo-Jet	40cm	22026-00
Cap to	60cm	22036-00
	91cm	22038-00
1/4 INF 1-101	122cm	22048-00
	5.7cm	13

Other styles of Hose Drop Assemblies using threaded inlets are also available. Find them in the DRY BOOMS section of the catalog.

Fertilizer Streamer Caps

3-hole Fertilizer Streamer Caps [Molded]

3-hole fertilizer streamer (FS3) nozzle improves stream consistency across higher pressure ranges

Color-coded, Single part number ordering

VISIT PAGE 28-29 for both FS3 Fertilizer Streamer Caps & metering orifice charts

2-hole Streamer Caps [Drilled]

2-hole streamer caps are used to stream liquid fertilizer for

3-hole Streamer Caps [Drilled]

3-hole streamer caps are used to stream liquid fertilizer ~17cm coverage

Drilled Fertilizer Streamer Caps [CAP ONLY]					
Cap Size	Flow Range	2-Hole Cap	3-Hole Cap		
Small	0.19 - 1.51 L/min	40432-047	40433-047		
Medium	0.76 - 3.78 L/min	40432-086	40433-067		
Large	1.9 - 11.4 L/min	40432-104	40433-104		

Ordering [Drilled] Streamer Caps

For drilled streamer cap assembly, order:

- 1. Metering Orifice (40285-## series)*
- 2. Streamer cap (2 or 3 hole, sized to flow range
- 3. O-ring seal (40260-00 or 40260-V0)
- 4. [Optional] Slotted Strainer

*For selecting metering orifices to fit your application, use Tip Wizard, consult flow charts, or use other tools available at www.wilger.net

Square Lug Nozzle Outlet Caps - Only for Square Lug Nozzle Body Outlets (Teejet, Hypro, etc)

40197-05 Square Lug nozzle outlet plug cap

3/8" Slot Cap

40248-00

Color

Blue

40260-V0

40159-05 For 3/8" wide flanged spray tips

Threaded Cap

45° 1/4" NPT-F thread

Flanged Strainers

Stainless Steel Strainers for Square-Lug Caps & Nozzles

Cap Gaskets

40160-00 [FKM] 40160-V0 [viton]

Gaskets are required to seal all Square Lug Caps

WILGER Dual-Spray 4+1 [DS41] Nozzle Bodies

Dual Spray 4+1 [DS41] Nozzle Bodies

The DS41 nozzle body is the next generation of compact nozzle body. Many significant design changes have been made to improve turret position, durability and strength, and reliability in some of the most challenging environments in spraying.

			DS41 Nozzle Bodies with 5/16" Bolt Mount Upper Clamp			er Clamp
Boom			Turret Control	Module C	Configuration & Assem	oly Part#
Pipe/Tube	Nozzle Outlet	Inlet Hole	Module	-00	-MS1	-NM
Size	Configuration	Size	Position ¹	MSO on BOTH	MSO on Bypass	No modules on
Oizo			1 0010011	Bypass & Turret	No Module on Turret	Bypass & Turret
		3/8" Inlet	LEFT	41902-00	41902-MS1	41902-NM
	4 CJ (Turret)	3/6 Inlet	RIGHT	41903-00	41903-MS1	41903-NM
	+ 1 CJ (Bypass)	High Flow	LEFT	41900-00	41900-MS1	41900-NM
1"		21/32" Inlet	RIGHT	41901-00	41901-MS1	41901-NM
(1.315" OD)		3/8" Inlet	LEFT	41912-00	41912-MS1	41912-NM
	4 SqLug (Turret)	3/6 IIIIet	RIGHT	41913-00	41913-MS1	41913-NM
	+ 1 CJ (Bypass)	High Flow	LEFT	41910-00	41910-MS1	41910-NM
		21/32" Inlet	RIGHT	41911-00	41911-MS1	41911-NM

DS41 LEFT & RIGHT bodies are dictated by position of turret module relative to the front faceplate. For ease of ordering, recommended to order 50% LEFT & RIGHT for sprayer retrofits. Bypass' module is always opposite the turret's module.

Ordering DS41 as -MS1 with MS0 (hypass) + PWM (Turret)

NEW 30/50 Adapter for angled spraying with the DS41

Given the DS41 is ultra compact, the 30/50 was designed to spin on the turret with the 30° angle forward¹.

40442-00 Perfect forcereal fungfette application

¹When using the 50° nozzle angle forward, removal of the adapter will be required due to the compact nature of the DS41.

COMBO-JET Nozzle Bodies

Hinged Clamp for easy installation

Compact body sits directly under the boom. Perfect for tight boom frames & heavy **PWM** solenoids

Nozzle Bodies can

swap right/left

orientation to avoid

sprayer boom frame

Debris-cleaning 3/8" inlet slots for less residue buildup

Bodies can be equipped with any combination of control modules, including AIR-OFF, PWM solenoid, Manual ON/OFF or spring-based diaphragm check valves

Nozzle Bodies available in Combo-Jet or Square Lug styles (Teejet/Hypro/etc) with 1, 2 or 3 nozzle outlets

Single Outlet COMBO-JET® Nozzle Bodies

Robust and cost effective nozzle bodies for sprayers and used on wet boom liquid fertilizer kits.

Inlet Size	Outlets	Style	Part#
3/8"	1 CJ	Check Valve	40611-00
		Check Valve	40621-00
3/8"	1 CJ	Manual On/Off	40621-MS
		No Module	40621-NM
21/32"	1 CJ	No Module	40626-NM
	3/8"	3/8" 1 CJ 3/8" 1 CJ	3/8" 1 CJ Check Valve Check Valve Manual On/Off No Module

The COMBO-JETO Adventege

40611-P15 Single Outlet w/ 1.0bar check valve red) and hose barb cap

Commonly used in liquid fertilizer metering manifolds mounted on plumbed pipe

KWIKSTOP™ stops Run-on

KWIKSTOP™passively purges air trapped in the sprayer boom.

Nozzles are fed from the top of the pipe

Less air means Less Nozzle Run-on & Drips

High/Low PSI Check Valves

Replace part # ending '-00' to order

Dual Outlet COMBO-JET® Swivel Bodies

Robust and cost effective nozzle bodies for sprayers to switch up to two nozzles by simply rotating the outlet. Safer and easier than handling contaminated nozzles.

3				
Boom Pipe	Inlet Size	Outlets	Style	Part#
3/4" (1.05" OD)	3/8"	2 CJ	Check Valve	40612-00
			Check Valve	40622-00
1"	3/8"	2 CJ	Manual On/Off	40622-MS
(1.315" OD)			No Module	40622-NM
	21/32"	2 CJ	No Module	40627-NM

Commonly used to cos

0.27 bar 0.7 bar -00 [BLUE] [Standard]

1 bar -P15 [RED]

Triple Outlet COMBO-JET® Swivel Bodies

Robust and cost effective nozzle bodies for sprayers to switch up to three nozzles by simply rotating the outlet. Safer and easier than handling contaminated nozzles.

Boom Pipe	Inlet Size	Outlets	Style	Part#
3/4" (1.05" OD)	3/8"	3 CJ	Check Valve	40613-00
			Check Valve	40623-00
1"	3/8"	3 CJ	Manual On/Off	40623-MS
(1.315" OD)			No Module	40623-NM
	21/32"	3 CJ	No Module	40628-NM

effectively retrofit a sprayer to a PWM spra

1" KWIKSTOP™ Nozzle Bodies

Nozzle bodies with raised inlets to passively purge air trapped at the top of a sprayer boom pipe, reducing nozzle run-on & improving boom shut-off response times.

Boom Pipe	Outlets	Style	Part#
1"	1 CJ	Check Valve	40631-00
' '	2 CJ	Check Valve	40632-00
(1.315" OD)	3 CJ	Check Valve	40633-00

Smooth Clamp Bodies

Swivel bodies have been switched to a standard bolt-mount hinge clamp.

Contact Wilger for a cross-reference chart for the smooth clamp part numbers and their bolt-mount replacement.

Nozzle Body Specifications

Operating Pressure	0.7*-7 bar
Single Outlet Flow Rate	8 L/min @0.34bar pressure drop 11.7 L/min @0.68bar pressure drop
Dual Swivel Flow Rate	6.4 L/min @0.34bar pressure drop 10.2 L/min @0.68bar pressure drop
Triple Swivel Flow Rate	6 L/min @0.34bar pressure drop 9.8 L/min @0.68bar pressure drop
O-ring Seals	FKM (viton avail.)
Materials	SS (screws) Polypropylene (body) Celcon (lower swivel)

Square Lug Swivel Nozzle Bodies & Accessories

Single Outlet Square Lug Nozzle Bodies

Robust and cost effective nozzle bodies for sprayers and used on wet boom liquid fertilizer kits.

Boom Pipe	Outlets	Style	Part#
3/4"	1 Square Lug	Check Valve	40651-00
(1.05" OD)		No Check	40140-00
	1 Square Lug	Check Valve	40661-00
1"		Manual On/Off	40661-MS
(1.315" OD)		No Module	40661-NM
		No Check	40141-00

KWIKSTOP™ stops Run-on

KWIKSTOP™passively purges air trapped in the sprayer boom.

Nozzles are fed from the top of the pipe

Less air means Less Nozzle Run-on & Drips

Dual Outlet Square Lug Nozzle Bodies

Robust and cost effective nozzle bodies for sprayers to switch up to two nozzles by simply rotating the outlet. Safer and easier than handling contaminated nozzles.

Boom Pipe	Outlets	Style	Part#
3/4" (1.05" OD)	2 Square Lug	Check Valve	40652-00
1"		Check Valve	40662-00
(1.315" OD)	2 Square Lug	Manual On/Off	40662-MS
(1.315 OD)		No Module	40662-NM

High/Low PSI Check Valves

Replace part # ending '-00' to order 0.27bar or 1bar check valves

-00 [Standard]

-P15' [RED]

Triple Outlet Square Lug Nozzle Bodies

Robust and cost effective nozzle bodies for sprayers to switch up to three nozzles by simply rotating the outlet. Safer and easier than handling contaminated nozzles.

Boom Pipe	Outlets	Style	Part#
3/4" (1.05" OD)	3 Square Lug	Check Valve	40653-00
1"		Check Valve	40663-00
(1.315" OD)	3 Square Lug	Manual On/Off	40663-MS
		No Module	40663-NM

Nozzle Body Specifications

Operating Pressure	0.7*-7 bar	
Single Outlet Flow Rate	8 L/min @0.34bar pressure drop 11.7 L/min @0.68bar pressure drop	
Dual Swivel Flow Rate	6.4 L/min @0.34bar pressure drop 10.2 L/min @0.68bar pressure drop	
Triple Swivel Flow Rate	6 L/min @0.34bar pressure drop 9.8 L/min @0.68bar pressure drop	
O-ring Seals	FKM (viton avail.)	
Materials	SS (screws) Polypropylene (body) Celcon (lower swivel)	

1" KWIKSTOP™ Square Lug Nozzle Bodies

Nozzle bodies with raised inlets to passively purge air trapped at the top of a sprayer boom pipe, reducing nozzle run-on & improving boom shut-off response times.

Boom Pipe	Outlets	Style	Part#
1" (1.315" OD)	1 Square Lug	KWIKSTOP	40671-00
	2 Square Lug	KWIKSTOP	40672-00
	3 Square Lug	KWIKSTOD	40673-00

Swivel Body Replacement Parts - For ALL TYPES Swivel Bodies

O-ring Repair Kit, CJ Nozzle Bodies, FKM (6 Bodies) 40166-05 O-ring Repair Kit, CJ Nozzle Bodies, VITON® (6 Bodies) 40193-02 SCREW, Hi-Lo, #10 x 3/4" SS [for Hinged Swivel Bodies]

40155-23 Molded Diaphragm, FKM (replaces 40155-07 + 20455-04) 20455-07 O-ring, 3/8" inlet seal, #110, FKM, Duro 70 20455-04 O-ring, Pressure Pad, Replacement (pairs with 40155-07)

Diaphragm Rubber Seal, EPDM (use w/ #20455-04)

40155-12 Diaphragm Rubber Seal, VITON® (use w/ #20455-04)

CJ Nozzle Body Repair Kits* (up to 6 bodies)

BUNA-N Kit incl 6x Pressure Pad O-rings #20455-04 24x Inner-body O-rings #40155-09 #40155-13 #40155-07 6x Diaphragms #40155-12 de either a pair of #20455-04 & #40155-07, or #40155-23. Both serve the same function.

3/8" Nozzle body inlet o-ring

20455-07

PRODUCT UPGRADE: Diaphragms A molded, single-piece diaphragm is replacing the two-piece diaphragm rubber + pressure pad o-ring. For replacing old-style parts, ENSURE pressure pad o-ring is removed from check valve module, and the new diaphragm groove fits where the pressure-pad o-ring was Replaced by Single-Piece Molded Diaphragm

WWW.WILGER.NET

20455-04 40155-07 40155-23 Requires pressure pad Also requires 20455-04 o-ring to be removed pressure pad o-ring

COMBO-RATE Stacking Nozzle Bodies

COMBO-RATE® Side-fed Saddles

Robust side-fed saddles mount with a inlet hole on the side of a sprayer boom, with a female combo-clip port for CR bodies

41206-00

COMBO-RATE® II Top or Bottom-fed Saddles

Combo-Rate II saddles can be fed with an bottom inlet or flipped and fed from a hole in the top of a boom pipe to passively purge air trapped in a sprayer boom.

41472-00

Combo-Rate female u-clip ports on two sides can be used to attach any Combo-Rate parts

CRII One-Way Stacking Saddles

Boom Size	Inlet Size	Part#		
1/2" Pipe (0.84" OD)	3/8" inlet	41471-00		
1" Pipe (1.315" OD)	3/8" inlet	41475-00		
	9/16" inlet	41477-00		
	21/32" inlet	41479-00		

CRII Two-Way Stacking Saddles

Boom Size	Inlet Size	Part#
1/2" Pipe (0.84" OD)	3/8" inlet	41472-00
1" Pipe	3/8" inlet	41476-00
(1.315" OD)	9/16" inlet	41478-00

(2.375" OD)

COMBO-RATE_® II Integrated Nozzle Bodies

One-Way Stacking Integrated COMBO-RATE ® II Nozzle Bodies

One-way stacking COMBO-RATE nozzle bodies stack to the left with one open u-clip port. Typically using a manual on/off module, these bodies can be used to spray separately than turrets/bodies or simultaneously from multiple nozzles. Multiple nozzle spraying can be an effective way to improve coverage in high volume applications to make a more meaningful mix of droplets.

Nozzle Body Specifications

Boom Size

1/2

3/4"

28mm

Sch40 Pipe

Outside

Stacking

Direction

Inlet Size

HOW THEY WORK: Manual ON/OFF Check Valves

PWM

Since Combo-Rate nozzle bodies stack, a manual way to turn off low to certain outlets is required.

Air-Off

Operating Pressure	0.7*-7bar ² (5.5 bar for air-off)
3/8" Inlet Single Outlet Flow Rate	8 L/min @0.34bar pressure drop 11.7 L/min @0.68bar pressure drop
9/16" Inlet Single Outlet Flow Rate	8.3 L/min @0.34bar pressure drop 13.25 L/min @0.68bar pressure drop
21/32" Inlet High Flow Single Outlet Flow Rate	11.35L/min @0.34bar pressure drop 15L/min @0.68bar pressure drop
O-ring Seals	FKM (viton avail.)
Materials	SS (screws) Glass-Reinforced Polypropylene (body)
* 0.7har minimum wi	th 0 7har check valve

Diameter ON/OFF (w/o Nut)** Valve Operated² 0.84 3/8" Inlet One-Way 41411-00 41413-00 41415-00 41417-00 1 05' 3/8" Inlet One-Way 41421-00 41423-00 41425-00 41427-00 28mm 3/8" Inlet One-Way 41481-00 41483-00 41485-00 41487-00 3/8" Inlet One-Way 41431-00 41433-00 41435-00 41437-00 1.315 9/16" Inlet 41441-00 41443-00 41445-00 41447-00 One-Way 1" KWIKSTOP 1.315" 3/8" Inlet One-Way 41451-00 41453-00 41455-00 41457-00

Dia. Check

Two-Way Stacking Integrated COMBO-RATE ® II Nozzle Bodies

Nozzle Bodies with 5/16" Bolt Mount Upper Clamp Module Description & Part#

Manual

Two-way stacking COMBO-RATE nozzle bodies stack to both directions, with two open u-clip ports. Typically using a manual on/off module, these bodies can be used to spray separately than turrets/bodies or simultaneously from multiple nozzles. Multiple nozzle spraying can be an effective way to improve coverage in high volume applications to make a more meaningful mix of droplets.

				Nozzle Bo	dies with 5/16"	Bolt Mount Upp	per Clamp
	Sch40 Pipe			Module Desci	ription & Part#		
Boom Size	Outside Diameter	Inlet Size	Stacking Direction	Dia. Check Valve	Manual ON/OFF	Air-Off Operated ²	PWM (w/o Nut)**
1/2"	0.84"	3/8" Inlet	Two-Way	41412-00	41414-00	41416-00	41418-00
3/4"	1.05"	3/8" Inlet	Two-Way	41422-00	41424-00	41426-00	41428-00
28mm	28mm	3/8" Inlet	Two-Way	41482-00	41484-00	41486-00	41488-00
1"	1.315"	3/8" Inlet	Two-Way	41432-00	41434-00	41436-00	41438-00
'	1.315	9/16" Inlet	Two-Way	41442-00	41444-00	41446-00	41448-00
1" High Flow	1.315"	21/32" Inlet	Two-Way	41462-00	41464-00	41466-00	41468-00
1" KWIKSTOP	1.315"	3/8" Inlet	Two-Way	41452-00	41454-00	41456-00	41458-00

Stacked Outlet Specification

c	perating Pressure	0.7*-7bar ² (5.5 bar for air-off)
ŀ	3/8" Inlet Two Outlets Used Flow Rate	12 L/min @0.34bar pressure drop 19 L/min @0.68bar pressure drop
-	9/16" Inlet Two Outlets Used Flow Rate	13.6 L/min @0.34bar pressure drop 23 L/min @0.68bar pressure drop
	21/32" Inlet High Flow Two Outlets Used Flow Rate	17 L/min @0.34bar pressure drop 34 L/min @0.68bar pressure drop
	O-ring Seals	FKM (viton avail.)
	Materials	SS (screws) Glass-Reinforced Polypropylene (body)
*	0.7bar minimum w	ith 0.7bar check valve

Combo-Rate Body, Turret Replacement & Auxiliary Parts

40200-02 O-ring, CR Inter-body, #206, FKM O-ring, 3/8" Nozzle Body Inlet Stem, #110, FKM 20455-07 40200-02 O-ring, 9/16" Nozzle Body Inlet Stem, #206, FKM 41361-02 0-ring, 21/32" Nozzle Body Inlet Stem, #115, FKM 20460-04 U-clip, 304SS 41331-03 Screw, Hi Lo, SS, CRII Body Hinge Clamp Screw (for 2016+ newer)

41285-00 Adapter, CR Plug [Covers unused Combo-Rate port] 41286-00 Plug, Inner CR2 port plug [fits inside side port of CRII bodies]

41502-04 CR Turret Outlet Arm, Combo-Jet Outlet 41502-10 CR Turret Outlet Arm, Square Lug Outlet CR Turret Outlet Arm, Double-Down Combo-Jet Outlet 41502-13 41502-05

CR Turret Outlet Arm, Plug Diaphragm, Molded, FKM (Replaces #40155-07 + 20455-04) 40155-23 CRII Nozzle Body O-ring Repair Kit, FKM (6 Bodies) 41100-16 CRII Nozzle Body O-ring Repair Kit, VITON® (6 Bodies)

41502-11 CR Turret Repair Kit, FKM (2 Bodies) CR Turret Repair Kit, VITON® (2 Bodies) 41502-12 Plug, CR Clamp to plug 21/32" inlet hole on 1" pipe * Requires #20455-07 O-Ring

41592-00 **Bolt-Mount** Clamp for any 1.315" OD. pipe or tube

41593-00 21/32" Inlet Plug Clamp

20460-04

Standard Kit includes

41502-13*

#40155-13

Inter-body O-ring COMBO-RATE®

41286-00 Keeps chemical out of a CRII side port hole

COMBO-RATE® II Body Repair Kits* (For up to 6 bodies): #41100-15 or -16

#41502-11 or -12

Turret Repair Kits (For up to 2 turrets):

4x Turret Core O-rings 2x Diaphragm #41502-06 #40155-07 #41502-V6 #40155-12 2x Combo-Jet Outlet Arm #41502-04 #41502-04 2x Turret Plugs 2x Turret Lock Clips #41502-05 #41502-09

10x Turret Outlet O-rings #20455-07

6x Pressure Pad O-rings #20455-04 #20455-V4 6x Inter-body O-rings #40200-02 #40200-V2 6x Diaphragms 40155-07 *Repair kits may include a pair(s) of #40155-07 and #20455-04, or a single #40155-23. Both ser

COMBO-RATE Stacking Thru & End Bodies

COMBO-RATE® Thru Bodies

Thru bodies stack onto any existing combo-clip female port and adds an additional combo-clip female port for further expansion.

	COMBO-RATE Thru Body					
	[Connects to any Combo-Rate female ports]					
D	Dia. Check Manual Air-Off PWM					
	Valve ON/OFF Operated ² (w/o nut)**					
4	1100-00	41110-00	41125-00	41135-00		

COMBO-RATE® End Bodies

End bodies stack onto any existing combo-clip female port to add a nozzle body that can be equipped for any spraying needs.

COMBO-RATE End Body					
[Connects to any Combo-Rate female ports]					
Dia. Check	Manual	Air-Off	PWM		
Valve	ON/OFF	Operated ²	(w/o nut)**		
41101-00	41111-00	41126-00	41136-00		

CR Swivel End Bodies

End bodies that can be fixed in 15° increments for fence-row & crop adapted spraying applications. Attaches to any combo-clip female port.

COMBO-RATE End Body				
[Connects to any Combo-Rate female ports]				
Dia. Check Manual Air-Off PWM				
Valve ON/OFF Operated2 (w/o nut)**				
41102-00	41112-00	41127-00	41137-00	

Combo-Rate Stacking Body Specification Operating Pressure 0.7*-7bar ²(5.5 bar for air-off)

O-ring Seals FKM (viton avail.) Materials
Glass-reinforced Polypropylene

Flow Rate 8L/min (end & thru), 6L/min (swivel body)

COMBO-RATE Turrets

The COMBOLIME TURES ACKEDIES

Common U-clip connections for all Combo-Rate parts

Each turret arm is o-ring sealed to minimize dust & debris entry

Module threads are compatible with most PWM spray systems

Front Turret

Side Turret

Top Turret

Bodies can be equipped with any combination of control modules, including AIR-OFF, PWM solenoid, Manual ON/OFF or spring-based diaphragm check valves

Double-Down Turrets allow for dual nozzle spraying for better overage in high volume & fungicide applications

Square Lug, or Double-Down outlets

COMBO-RATE turrets provide you options to configure a desired turret configuration, allowing it to be a universal turret for any brand of sprayer or nozzles.

COMBO-RATE_® Stacking Component Examples

Side-Fed saddle with a thru and end body

solve sprayer issues

Can be fixed in 15° increments

Thru Bodies **End Bodies** Swivel End Bodies For Fence-row mozzle

COMBO-RATE Turrets - cont'd

Sprayers have different nozzle requirements, due to spacing, boom frame design & interference, so Wilger has three styles of turrets that can be used to fit any situation.

COMBO-RATE Front Turrets

Front turrets stack onto any COMBO-RATE nozzle body, mounting on the common u-clip port. Turrets are available in a variety of outlet and module styles, which are mounted onto the 'front' face of the turret.

		Description & Part #			
Number of Outlets	Dia. Check Valve	Manual ON/OFF	Air-Off Operated	PWM (w/o nut)*	
3 CJ Outlet	41503-00	41513-00	41543-00	41533-00	
4 CJ Outlet	41504-00	41514-00	41544-00	41534-00	
5 CJ Outlet	41505-00	41515-00	41545-00	41535-00	
3 CJ Outlet + 2 SQ Lug Outlet	41505-32*	41515-32*	41545-32*	41535-32*	
Double-Down + 4 CJ Outlet	41506-00	41516-00	41546-00	41536-00	

HOW THEY WORK: Manual ON/OFF Valves

Since Combo-Rate nozzle bodies stack, a manual way to turn off flow to certain outlets is required.

When the knob is 0 standard 0.7bar check valve

When the knob is CLOSED, it turns off ow to that nozzle outlet ONLY. It does not effect other stacked nozzle bodies.

Module Installation & Re-installation

During installation, ensure knob is in OPEN orientation. Otherwise the binding nut cannot seal the check valve module. Ensure the orientation tabs (green) are seated properly.

COMBO-RATE Side Turrets - Reversible

Side turrets stack onto any COMBO-RATE nozzle body, mounting on the common u-clip port. Turrets are available in a variety of outlet and module styles, which are mounted onto the side of the turret with a reversible module stem.

		Description & Part #				
Number of Outlets	Dia. Check Valve	Manual ON/OFF	Air-Off Operated	PWM (w/o nut)*		
3 CJ Outlet	41603-00	41613-00	41643-00	41633-00		
4 CJ Outlet	41604-00	41614-00	41644-00	41634-00		
5 CJ Outlet	41605-00	41615-00	41645-00	41635-00		
3 CJ Outlet + 2 SQ Lug Outlet	41605-32	41615-32	41645-32	41635-32		
Double-Down + 3 CJ Outlet	41606-00	41616-00	41646-00	41636-00		

Side-Turret Core Replacement kit for Teejet Threaded PWM Solenoid Side-Turret Core Replacement kit for Arag /Hypro Threaded PWM Solenoid

PWM Solenoids

Kit for Hypro/Arag PWM Solenoids

Reversing Orientation

Switch a side turret module stem from left to

COMBO-RATE Top Turrets

Top turrets stack onto any COMBO-RATE nozzle body, mounting on the common u-clip port. Turrets are available in a variety of outlet and module styles, which are mounted onto the top of the turret. Ideal for use with bulky PWM solenoids in tight booms.

		Description & Part #			
Number of Outlets	Dia. Check Valve	Manual ON/OFF	Air-Off Operated	PWM (w/o nut)*	
3 CJ Outlet	41803-00	41813-00	41843-00	41833-00	
4 CJ Outlet	41804-00	41814-00	41844-00	41834-00	
5 CJ Outlet	41805-00	41815-00	41845-00	41835-00	
3 CJ Outlet + 2 SQ Lug Outlet	41805-32	41815-32	41845-32	41835-32	
Double-Down	41806-00	41816-00	41846-00	41836-00	

Solenoid gasket (Seats on wilger modules to seal on solenoid base)

41133-03

Module points upwards to keep large solenoids (e.g. Hawkeye II) out of the way of other boom parts.

with double-down outlet

Open module thread must have PWM solenoid or other control module to function

Double-Down Turrets Double nozzles from a single turret outlet. Great for double-down PWM spraying.

Increasing Coverage with Crop-Adapted Spraying

Different crops require different kinds of spray coverage for best efficacy, so changing how spray is deposited can often provide beneficial results in both coverage and application efficacy. It starts with adapting how the crop is being targeted, ensuring maximizing spray deposition on the target area, and minimizing spray on lessideal or wasted areas.

For example, using two spray tips **straight down** can provide better penetration through thick canopies, allowing for better interior canopy coverage; while two angled spray patterns **forward & backward** can lend to spray coverage at the top canopy foliage or on both front/back of a cereal head.

Why use two nozzles straight down, and not a multi-angle spray tip?

Further distance to target can mean less canopy penetration with angled

COMBO-RATE gives you better penetration and coverage for a more consistent application into thick canopy crops.

Examples of *Tough to Penetrate* Crop Canopies

Bodies

& COMBO-RATE

Picking Nozzles for Double-Down Spraying?

Applicators often already have nozzles to be used in pairs for double down spraying.

E.g. 50L + 100 L/ha nozzles could be used for 150 L/ha. Visit the dual tip spraying guide in the catalog for more info.

What about spraying vertical targets that don't have a dense canopy?

Angled spray for vertical growing targets (e.g. cereal heads) can provide superior coverage Spraying a vertical target is different than spraying into a canopy. Spraying forward/backward with a nozzles produces spray that can travel horizontal, making it more effective to cover vertical targets at suitable boom heights.

Illustration for conceptual use only

Dry Boom Nozzle Bodies & Accessories

Compact Nozzle Bodies

Compact Bodies have many uses, as in-line check valves on planting equipment, estate sprayers, dry boom nozzle bodies, or other situations that would require a compact check valve with a Combo-Jet cap outlet.

a Combo-Jet outlet

3/4"HB x 3/8" NPT-M

5/8" Square-Mount Dry Boom Swivel Nozzle Bodies with 3/8" NPT-F feed

Square-Mount nozzle bodies attach to a boom frame with 5/8" square mounts, and are fed by a 3/8" NPT-F inlet.

40313-00

40312-00

High Mount Dry Boom Nozzle Bodies with Hose Shank Feed

40311-00

Inlet(s)	One-Way	Two-Way
3/8" Hose Barb	40450-00	40451-00
1/2" Hose Barb	40452-00	40453-00
3/8" HB x 1/4" NPT-M	-	40454-00

Sq Mt w/o check Square Mount Compact Bodies without check valves 40406-00 Inlet(s) One-Way Two-Way 1/2" HB 40406-00 40407-00

5/8" Square Mount Stainless Steel Clamps

Wilger manufactures a series of 5/8" square mount clamps that are used with compatible nozzle bodies. Refer to the CLAMPS pages to find the full listing of available stainless steel clamps

Dry Boom Nozzle Bodies & Accessories - cont'd

Rotating Adjustable Swivel Bodies & Hose Drop Assemblies

Hose Drop Adapters

Nylon hose drops are used to feed bodies to spray down below a canopy to minimize crop contact

Hose Drop Adapters

Inlet	Outlet	Length	Part #
	16"	22021-00	
	1/4"	24"	22031-00
1/4"	NPT-M	36"	22037-00
NPT-M		48"	22047-00
	1/4"	16"	22025-00
1	NPT-F	24"	22035-00

22021-00

Hose Drop & Extension Caps

Outlet	Length	Part #	
Combo-Jet	5cm	40210-00	
to Combo-Jet	13cm	40211-00	
Combo-Jet Cap to	40cm	22026-00	
	61cm	22036-00	
1/4" NPT-M	91cm	22038-00	
1/4 INF I-IVI	122cm	22048-00] }
			2

40210-00 Cap Extension

Adjustable Swivel Bodies [360° Lockable Rotation Front/Back]

Swivel Bodies can be rotated front to back 360° use for Crop Adapted Spraying or other targeting

			Control Modules				
	Inlet Size	Outlet(s)	Without Dia.	Dia. Check	Manual On/Off		
	1/4"	Single	40225-00	40231-00	40237-00		
	NPT-M	Double	40226-00	40232-00	40238-00		
	1/4"	Single	40227-00	40233-00	40239-00		
	NPT-F	Double	40228-00	40234-00	40240-00		
	1/4"NPT-M w/ 1/4"	Single	40229-00	40235-00	40241-00		
	NPT-F	Double	40230-00	40236-00	40242-00		
	3/8" HB w/ 5/8" Sq. Mount	Single	40243-00	40244-00	40245-00		

Crop Adapted Spraying

Using adjusted nozzle angles, swath and direction to better adapt to specific crop targets to maximize efficacy or minimize

360° Independent Outlets

11/16" Thread Mount Low Mount Bodies

Low-Mount Compact Bodies - Contact Factory for availability. (Non-stocked item)

A low mounting compact body that attaches to a sprayer boom frame with an 11/16" threaded nut.

Inlet Size One-Way [Left] One-Way [Right]

40361-00

40366-00

40371-00

40360-00

40365-00

40370-00

40367-00

Two-Way

40362-00

40367-00

40372-00

40199-00

5/8" Square Mount Low Mount Bodies

A low mounting compact body that attaches to a sprayer boom frame with an common 5/8" square mounting port.

40385-00

40382-00

40155-21

Inlet Size	One-Way [Left]	One-Way [Right]	Two-Way	Three-Way
3/8" HB	40380-00	40381-00	40382-00	40383-00
1/2" HB	40385-00	40386-00	40387-00	40388-00
3/4" HB	40390-00	40391-00	40392-00	N/A

40155-21 Module Retainer Replacement

3/8" HB

1/2" HB

3/4" HB

COMBO-RATE Boomless Sprayer Manifold Assemblies

Boomless sprayers are used to spray areas not accessible by traditional boomed sprayers, such as ditches, roadways, pastures, and commercial/industrial areas.

COMBO-RATE boomless sprayers can be configured in hundreds of ways depending on mounting, size, and flow requirement.

Example Assembly	Flow Rate (L/min)	Part#
3-Nozzle Boomless	5L/ min	70154-01
Spraying Manifold	10L/ min	70154-03
Spraying Manilolu	22L/ min	70154-06
	8.7L/ min	70155-02
5-Nozzle Boomless	11L/ min	70155-03
Spraying Manifold	22L/ min	70155-06
	43.5L/ min	70155-12
	15L/ min	70156-04
7-Nozzle Boomless	18.5L/ min	70156-05
Spraying Manifold	36L/ min	70156-10
	74L/ min	70156-20

Adiustable swath distance charts online

Stainless Steel Clamps for Sprayer & Liquid Fertilizer Appl.

5/8" Square Mount Clamps

5/8" Square Mount clamps attach a nozzle body with 5/8" square mount to a tube or pipe

Mount Size		ndard ount Clamp (SS)	Adjustable High-Reach 5/8" Square Mount Clamp (SS)
	for Round Tube	for Square Tube	for either Round Tube or Square Tube
1/2"	40320-SS	N/A	3/4" Tube Extra High Reach
3/4"	40321-SS	40325-SS	40343-SS
1"	40322-SS	40326-SS	3/4" to 1-1/4"
1-1/4"	N/A	40327-SS	40341-SS
1-1/2"	N/A	40328-SS	1-1/2" to 2"
2"	N/A 40330-SS		40342-SS
40341-04 R	enlacement Lock Cli	n Plastic	

3/4" Square Mount Clamps for Nozzle Bodies

Part# Sq. Tube Size 41261-SS 1-1/4" 41262-SS 1-1/2 41263-SS 41264-SS

Example of Example of 3/4" Square mount clamp and adapters, mounting to a Combo-Rate u-clip port

41580-00

41591-00 For 1" Pipe (1.315" 0.D.)

Size 1"	Part#
1"	40553-SS
1-1/4"	40554-SS
1-1/2"	40555-SS

Two-Hole Bolt-Mount Clamps for Sq. Tube Two-Hole Clamps for Flow Indicator, Manifold, & Nozzle Body Mounting

Three-Hole Bolt-Mount Clamps for Sq. Tube

Three-Hole Clamps for Sprayer Boom Tube, Nozzle Body & Utility Mounting Boom tube clamps are sold in halves, so two are required for proper use.

Nozzle Body Accessories & Replacement Parts

Combo-Rate Control Modules & Nuts

Wilger manufacturers a few styles of control modules that can be swapped between any Combo-Rate or Combo-Jet nozzle bodies

Recommended to apply 1.4bar more than spray pressure for ideal operation & guick shut-off Inter-body Strainers

Inter-body strainers are used in-between Combo-Rate nozzle bodies to catch burrs or debris during the break-in period of new sprayers, or to further protect_PWM solenoids

Diaphragm Seals

Rubber Diaphragms are used in ALL control modules to seal the flow within the check valve

All-in-One Diaphragm, used in parts made after 2019

40155-23

The bottom of the control modules have a groove for a presure pad o-ring or all-in-one diaphragm

Two-piece diaphragm & pressure pad o-ring

Diaphragm

Pressure pad O-Ring

40155-07 40155-12 20455-04 (Buna-N) 20455-V4

Either rubber diaphragm can be typically used, but ensure to replace diaphragm in proper orientation and remove pressure pad o-ring if 40155-23 diaphragm is used. For low pressure & flow, the twopiece may perform better.

0-ring Seals

O-ring seals are commonly used on many component parts.

FKM material is standard, viton is available.

0-ring	Description/Where Used	FKM#	VITON #
13mm x 3mm	COMBO-JET spray tips	40260-00	40260-V0
#009	CR Top-turret faceplate	41802-04	40802-V4
#015	ORS Metering orifices	40225-04	40225-05
#106	9/16" Nozzle body inlet	51204-04	51204-V4
#108	Module pressure pads	20455-04	20455-V4
#110	3/8" Nozzle body inlet	20455-07	20455-V7
#115	21/32" Nozzle body inlet	41361-02	41361-v2
#116	1/2" QN100 connections	25120-02	25120-V2
#118	ORS Strainer cartridges	-	20576-V4
#119	EFM Sensor housing seal	20580-12	20580-13
#121	CR Turret core seals	41502-06	41502-V6
#203	5/16" Push-In Tube O-ring	20457-03	20457-v3
#206	CR Stacked body side seal	40200-02	40200-v2
#212	0-ring Seal (ORS) fittings	20460-03	20460-15
#214	Boom end flush valve core	-	25175-08
#219	QN100 0-ring seal	25160-02	25160-V2

Air Tees & Reducers

Tees and Reducers that can be used to couple tube for air or liquid supply

20455-00 20456-00

Fitting Type	Description	Part#
Tee	3/8" x 3/8" x 1/4" O.D.	20455-00
iee	5/16" x 5/16" x 1/4" O.D.	20457-00
Reducer	3/8" x 1/4" O.D.	20456-00

Estate Sprayer Manifolds, Accessories & Adapters

Estate Sprayer Manifold Assemblies

Wilger manifold assemblies are pre-built manifolds based on common requirements. COMBO-RATE components can be used to expand or change any manifold.

Connection	Pressure Regulating Valve	Manual On/Off Check Valve	1/4" NPT-F for Pressure Gauge	
Thru Body	41130-00	41110-00	-	
End Body	41131-00	41111-00		
Combo-Clip Male	41131-00	41111-00	-	
End Body			41251-00	
Combo-Clip Female	_	_	41231-00	

Combo-Clip (CC) Adapters & 3/4" Sq. Mount Clamps

Combo-Clip connections are compatible with all Combo-Rate Fittings and Nozzle Bodies

Outlet	Part #
Plug	41285-00
1/4" NPT-F	41275-00
3/8" NPT-F	41276-00
1/4" NPT-F	41251-00
1/4" NPT-M	41252-00
3/8" NPT-M	41253-00
90° CC-M	41250-00
1/4" NPT-F	41255-00
3/8" NPT-F	41256-00
	Plug 1/4" NPT-F 3/8" NPT-F 1/4" NPT-F 1/4" NPT-M 3/8" NPT-M 90° CC-M 1/4" NPT-F

Clamps for 3/4" Square-Mount Adapters Square Tube 3/4" Sq. Mount Size Nozzle Body Clamps 41261-SS 1-1/4 41262-SS 41263-SS 1-1/2

Combo-Clip Adapters can be used to convert a traditional dry boom sprayer to use cutting edge COMBO-RATE turrets & fittings

41256-00 w/ 3/4" Sq. Mount Clamp

Regulating & Manual On/Off Manifold Valves

When in 'ON' position,

41130-00 Ensure to visit the NOZZLES section of the catalog for the full listing of **COMBO-JET** Caps

1/2" & 1" Stainless Steel Tube For Quick-Nut & Quick-Flange Fittings

Wilger Stainless Steel Tubing is engineered for high performing modern sprayers. The high flow sprayer boom tube shares outside dimensions of commonly-used sch40 pipe, but with dramatically reduced weight.

Custom tube lengths, spacing and inlet holes are available by order.

Larger Inside Diameter Inside diameter is larger to

accommodate higher flow rates

Rolled End for Cost-Effective Manufacturing

Tube ends are rolled instead of threaded to minimize downtime, and thread leaking/failure

For Recirculating Booms

Compatible boom fittings & tubing for building recirculating booms

1" Stainless Steel Tubing

Shares 1" sch40 pipe outside diameter (1.315" OD.) with larger 1.25" inside diameter

1.315" 1.25 0.D. I.D.

Lighter 1" Boom = Less Fuel

weighs 66% of aluminum weighs 23% of sch40 pipe Lighter than hose

1/2" Stainless Steel Tubing

Shares 1/2" sch40 pipe outside diameter (0.84" OD.) with larger 0.788" inside diameter

Lighter 1/2" Boom = Less Fuel

weighs 80% of aluminum weighs 28% of sch40 pipe Lighter than hose

Sprayer Tube Shipping Consideration - Length

Depending on requirement for sprayer tube length, shipping costs are generally less expensive for tubes that are less than 9' (108") in length.

Pre-punched Outlet Spacing

Sprayer tubes are commonly pre-punched to 20" nozzle spacing, but also available in pre-punched to 10", 15", 30" or custom spacing as required.

Picking the Correct Style of Tube End & Length

Different sprayer boom configurations require different combinations of lengths of tube.

To simplify the boom configuration & planning process, consider starting with tubes with the least amount of extra material on the ends. This will reduce dead-ends that may trap chemical residue. With the minimal tube length in mind (# of holes on tube x hole spacing), then consider different tube-end configurations.

Some fittings shorten the tube lengths required (as they include the last nozzle), reducing the # of holes required.

Standard Tube Ends (2")

Tubes that have 2" of tube after the last nozzle body are commonly used with QN100 or QF100 plumbing parts.

Super Compact Nozzle Body Ends (18")

The CR BEFV & QF100 w/ CR clamp integrates the last nozzle for a super compact boom end. The tube should be 2" shorter than the intended nozzle spacing to maintain consistent nozzle spacing.

NOTE: For each CR BEFV/Integrated Elbow, tube will be 1 inlet hole "short"

Center-fed Section Ends (8" or 8.25")

Tubes that are center-fed with Tees require a pair of longer tube sides to maintain proper 20" spacing with a 4" (QN100) or 3.5"(QF100) wide tee.

10" Ends for Tube to Tube SST

For situations that require two smaller tubes to be joined tube to tube, the 10" ends maintain 20" spacing between the last nozzle bodies

Select a Type of Plumbing Parts

NEW Quick-Flange (QF100) Fittings

A series of flanged adapters that convert either a rolled-end tube (like SST) or other 1.315" OD tube/pipe to

Quick Nut (QN100 & QN50) Fittings

A series of quick couplers that use the rolled end to connect to a variety of sweep sprayer fittings to maximize flow capacity and boom hygiene. Available in both 1' & 1/2" boom sizes.

Quick-Flange Fittings & Fluid Supply System

The Quickflenge Adventage

Perfect Recirc. **Booms**

Stronger Compact **Fittings**

Compact Boom End **Options**

No Threads or Sealant Required

Cutting out Boom Contamination

Retrofitting & Flange Compatibility

Fittings available for complementing any sort of sprayer boom & more.

CAN BE OUTFITTED FOR:

1" sch40 Pipe (1.315" 0D)

Any 1" Flanged Fittings Wilger Stainless Tubing

Compatible with other 1" Flange Fittings

2-1/32" Flange Surfac -3/8" Flange Sea Inside

Compact & Robust Sweep Fittings

Sweep fittings reduce turbulence & pressure loss, producing a sprayer that is capable of higher flow rates with less

Recirculation Made Easy

Many options for any recirculating boom

Sweep flange fittings to maximize flow through a sprayer

Quick-Flange Adapters for Different Sprayer Tubing Types

Adapting Quick-Flange Fittings to any 1" PIPE, 1" SST, or Case® TWS Boom Tube

QF100 Fittings can be seamlessly retrofitted or adapted to any 1" Pipe, QN SST, or TWS Booms to a 1" Flange Fitting.

Case® Thin-Wall Stainless (TWS) to Quick-Flange

27312-00

Three-piece flange adapter snaps over the boom pipe and tightens with a binding nut, sealing with a TWS to QF100 Seal. *For greater anti-twist

-00 27343-00 resistance, the skirted adapter end QF100 x 1-1/4" HB, 90° 27316-SK gasket is available Case® is a registered trademarks of CNH Industrial America LLC.

Wilger Stainless Steel Tube (SST) to Quick-Flange

Three-piece flange adapter snaps over the boom pipe and tightens with a binding nut, sealing with a SST to QF100 Seal.

27312-00 3-piece flange adapter end

Through-Pipe to CR BEFV & Thru Elbow

Through-Pipe Flange End Adapter Super Flexible Up to 3/4" of excess tube material can fi into a CR BEFV

27382-00

27360-00 CR BEFV for with flange

Two half-clamps mount on a boom tube, securing to the tube-end adapter. The result is a flanged tube end with up to 1/4-1" of excess tube material sticking out of the adapter. This excess length slides into a CR BEFV (or Elbow w/ top clamp #2737#-00 series), providing greater flexibility.

Cut-Pipe to Quick-Flange

Compatible with any Quick-Flange or common-flange fittings.

Two half-clamps mount on a boom tube, securing to the cut pipe-end adapter. The result is a common-flange end.

Not shown: An additional compact 2-piece pipe end adapter is also available for Case Thin-wall stainless tube, and Wilger SST. It is not intended for robust, mobile applications, but remains an option for adapting tube to a flange end.

Building a SST Sprayer Boom for Quick-Flange (QF100)

When planning to build a sprayer boom with Wilger's Stainless Steel Tube, follow these steps to break down the process and engineer the best performing sprayer boom possible.

STEPDetermine tube lengths & spacing required for each section. Simply count the number of outlets on each required boom tube between each fold, accounting for separated sections (if required).

STEP(2) Split up nozzle sections based on boom type, or to minimize boom tube length (e.g. 11 nozzles max).

For Recirculating (R) Sprayer Booms: Anticipate keeping sections made with as few boom tubes as possible, as plumbing fittings will only be on the either end of the tube (aside from any tube-to-tube joints on the same section)

For Standard (S) Sprayer Booms: Anticipate splitting sections in half, allowing for a center-fed sweep tee, providing optimal pressure to each nozzle in each sprayer section.

Determine whether any boom end nozzle bodies (like Combo-Rate Boom End Flush Valve nozzle body) are being used, as they may require different lengths (as they encompass the last outlet on a sprayer boom)

Determine the tube end spacing depending on the fittings used.

CR BEFV requires 18" tube end. Tube Joint requires 10" tube end. Regular fittings requires 2" end.

For example, a 5-section recirculation sprayer, with 72 outlets (on 20" spacing) using Combo-Rate End Flush Valve Bodies

	SECTION 1		SECTION 2	SECTION 3		SECTION 4	SECTION 5
STEP ① Section sizing	11 nozzles	20 no:	zzles	10 nozzles	20 no	zzles	11 nozzles
STEP 2 Tube Lengths	11 hole	10 hole + 10) hole joined	10 hole	10 hole + 10) hole joined	11 hole
STEP 3 Specialty Boom End Considerations	11 hole -2 (CR BEFV) 9 hole tube	10 hole -1 (CR BEFV) 9 hole tube + joint	10 hole -1 (CR BEFV) 9 hole tube + joint	10 hole -2 (CR BEFV) 8 hole tube	10 hole -1 (CR BEFV) 9 hole tube + joint	10 hole -1 (CR BEFV) 9 hole tube + joint	11 hole -2 (CR BEFV) 9 hole tube
STEP 4 Tube/End Lengths to Order	9 hole tube with 18" End (CR BEFV) & 18" End (CR BEFV)	9 hole tube with 18" End (CR BEFV) & 10" End (joint)	9 hole tube with 10" End (joint) & 18" End (CR BEFV)	8 hole tube with 18" End (CR BEFV) & 18" End (CR BEFV)	18" End (CR BEFV)	9 hole tube with 10" End (joint) & 18" End (CR BEFV)	9 hole tube with 18" End (CR BEFV) & 18" End (CR BEFV)

Quick-Flange Tube-End Adapters, Seals & Kits

QF100 Tube-End & Pipe-End Adapters, Seals & Kits

Gasket seals mate different tube & QF100 fittings together. Ensure correct seals are identified for each connection.

3pc End Adapter

2 halves secure over pipe, affixed with binding nut

Max Pressure

Seals Used

Wilger SST uses flared taper gasket

27315-SK [skirt] 27315-00 [std]

Case TWS uses

stepped or skirted gasket

Adapters & Kits

Boom End/T	ube Type	Adapter/Ki	
Wilger SST r OR Case TWS fl	[3pc] 27312-00 [2pc] 27313-00		
Cut pipe end	27381-00		
Through pipe e	rough pipe end kit [9pc]		
NPT-F	1/2" NPT-F	27357-00	
Threaded Pipe	27358-00		
Adapters	1" NPT-F	27359-00	

QF100 Gasket Seals

Seal Type	Standard	Skirted*
Sear Type	Seal Part#	Seal Part#
SST Tube x Flange	27315-00	27315-SK
TWS Tube x Flange	27316-00	27316-SK
Flange x Flange	27317-00	27317-SK
Wilger SST to SST	27318-00	27318-SK
Case TWS to TWS	27319-00	27319-SK

*Skirted gaskets are used when more robust sealed connections are required

2pc End Adapter

27313-00

Wilger SST

for non-mobile applications. requiring low pressure

2 halves secure over SST

Tube to Flange End Seals

Gasket seal against a formed tube end profile

Tube to	Standard	Skirted*	
Flange Seals	Seal Part#	Seal Part#	
SST Tube	27215 00	27315-SK	
x Flange	2/3/13-00	2/3/3-3K	
TWS Tube	27216-00	27316-SK	
x Flange	2/310-00	27310-3K	
*Skirted gaskets are used when more			

robust connections are required

SST Tube x Flange

TWS Tube x Flange 27316-SK 27316-00 Standard Skirted Gasket*

MATERIAL: FKM

Looking for 27316-02? It's been replaced by #27316-SK

Cut Pipe End Adapter Kit

27381-00 For any 1.315" OD pipe/tube

Seals Used Uses QF100

Standard Gasket 27317-00 [std] 27317-SK [skirt]

Flange to Flange Fitting Seal

Gasket seals common 1" flange fitting ends

Flange	Standard	Skirted*	
Seal	Seal Part#	Seal Part#	
Flange x Flange	27317-00	27317-SK	

Through Pipe Adapter Kit

27382-00 For any 1.315" OD pipe/tube

Up to

1/2" extra length

Most Robust

Use with CR BEFV or Through-Pipe

Tube End to Tube End Seals

Gasket seals between two butt ends of tube

Tube to Tube	Standard	Skirted*
Seals	Seal Part#	Seal Part#
Wilger SST to SST	27318-00	27318-SK
Case TWS to TWS	27319-00	27319-SK

Quick-Flange Clamps

Compact & robust clamps for easy installation & adjustment with hinging bolt. Compatible with common 1" flange fittings.

Poly Clamp	Part#
Butterfly Nut & Bolt	27310-00
Nut & Bolt	27311-00

Butterfly Nut Flange Clamp 27310-00

Nut & Bolt Flange Clamp 27311-00

Polypropylene Clamp & Stainless Hardware

Threaded Pipe Adapter

For male national pipe threaded (NPT) pipes

Available in 1/2", 3/4" & 1" NPT-F sizes

Kit seals holes, and

mates to CR BEFV

Threaded

Uses QF100 Standard Gasket 27317-00 [std]

QF100 Adapters & Caps

QF100 Plugs, and other adapters for auxiliary connections to QF100 fittings

Size/Style	Description	Part#
Plug Cap	QF100 Plug Cap	27353-00
Female	QF100 x 1/2" NPT-F	27357-00
Thread	QF100 x 3/4" NPT-F	27358-00
Adapter	QF100 x 1" NPT-F	27359-00
Male Thread	QF100 x QN100-M Thread	27351-00
Adapter	QF100 x TWS-M Thread	27352-00

QF100 Cap

Quick-Flange Fittings & Parts

QF100 Elbows & Hose Barb Fittings

Compact & high flow sweep fittings for less pressure loss & higher flow capability for a better performing sprayer boom.

Size/Style	Description	Part#
Flange	Elbow, 90°, Compact	27324-00
x Flange	Elbow, 45°, Compact	27326-00
1"	QF100 x 1" HB, Straight	27331-00
Hose Barb	QF100 x 1" HB, 45° Sweep	27332-00
x QF100	QF100 x 1" HB, 90° Sweep	27333-00
1-1/4"	QF100 x 1-1/4" HB, Straight	27341-00
Hose Barb	QF100 x 1-1/4" HB, 45° Sweep	27342-00
x QF100	QF100 x 1-1/4" HB, 90° Sweep	27343-00

27343-00 1-1/4" HB Elbow, 90°

High Flow Sweep Fittings

QF100 Sweep Tee & Regular Tee Fittings

Sweep Tees

Compact & high flow sweep fittings for less pressure loss & higher flow capability for an improved sprayer boom.

Tee Fittings	Sweep Tee	Regular Tee
lee Fittings	Part#	Part#
QF100 x QF100 x QF100	27371-00	27321-00
QF100 x QF100 x 1-1/4" HB	27372-00	27322-00
QF100 x QF100 x 1" HB	27373-00	27323-00

Regular Tees
Compact tees for flat
bottom drainage.

TETT

COMBO-RATE Boom End Flush Valve (CR BEFV)

The Better Boom End Nozzle Body & Valve

A boom end flush valve with two Combo-Rate ports for attaching a fence-row nozzle body, turret, or any COMBO-RATE fittings.

a rondo rom mozzno body, tamot, or a		
Valve version	Part#	
Base Model w/o plugs	27360-00	
Recirc Model w/ plugs	27361-00	
Non-Recirc model w/ plugs	27362-00	
Non-recirc w/ butterfly nut	27362-WN	

inlet/outlet
COMBO-RATE
u-clip port x2
Full Flush

Boom End Flush Valve

0-ring Seal outlet [compatible with any Wilger ORS fittings]

27362-WN

Easily adaptable for any configuration

Designed for Recirculating BoomsDesigned to incorporate an in-line flange

Designed to incorporate an in-line flange fitting for easy recirc configuration.

Passive Air Purge

Nozzle pulls air directly from the top of boom pipe reducing nozzle run-on

Super Compact Boom Ends

The last nozzle body, flush valve and flange outlet combined in one piece

Remove Dead Spots in the boom

Boom ends directly with last nozzle body and flush valve to ensure boom hygiene

QF100 Flange Elbow with Nozzle Body Upper Clamp

Flange Elbows w/ Body Clamp

Compact flanged elbows with built-in nozzle body clamp

	Compa	ct Elbow	Offset Ext.
Flange to Flange	Module Orientation		Elbow
	Outward	Inward	Inward
3/8" Inlet	27365-00	27366-00	27370-00
21/32" High Flow Inlet	27367-00	27368-00	27369-00

The offset flange allows for free use of flange fittings for recirculating sprayers ahead of the last nozzle body.

Nozzle bodies would be 'inward' facing.

'Through Pipe' Elbow w/ Body Clamp Use with #27382-00 'Through Pipe'

Use with #27382-00 Through Pipe Boom End Adapters ONLY

#27382-00 to	Module Orientation	
Flange	Outward Facing	Inward Facing
3/8" Inlet	273 <u>7</u> 5-00	273 <u>7</u> 6-00
21/32" Inlet	273 <u>7</u> 7-00	273 <u>7</u> 8-00

1" Quick-Nut (QN100) Boom Fittings & Stainless Steel Tube

The QuickNut Fitting & SST Advantage

Lighter Booms - Wilger SST

weighs 66% of aluminum weighs 23% of sch40 pipe Lighter than hose

Lower Cost

compared to other pipe plumbed sprayer booms

Recirculating Booms

Compatible boom fittings & tubing for building recirculating booms

Less Chemical Residue

compared to hose-plumbed sprayers

High Flow Boom Pipe

Maintains 1" pipe outside diameter, but inside diameter flows like 1-1/4'

QN100 Fittings for a Conventional Sprayer Boom

Contact Wilger for Custom Boom Tube & Hole Configurations for your sprayer boom.

[CANADA] Wilger Industries Ltd. 1 (833) 242-4121 info@wilger.net

[USA] Wilger Inc. 1 (877) 968-7695 WilgerESC@WilgerESC.com 25161-01 25160-02

25160-03

25171-00

Quick-Nut (QN100) Joint to Hose Barb

Example of a few possible configurations of 1" Quick-Nut (QN100) Sprayer Fittings

Stainless Tube (SST) to Boom End Flush Valve (BEFV)

Boom End

Long Handle

25160-02 25171-00

Sweep Tee to Stainless Tube (SST) 41591-00

QN100 Flared End

Sweep Tee to Hose Barb

25160-02

25160-01 25160-03 25172-00 Straight Barb Sweep Tee Female QN

QN100 Connectors & Components

Male QN

Easy to use boom end fittings and connectors to adapt 1" Wilger Stainless Steel Tubing (SST) to QN100 fittings.

Component Description SS Tube End Female Thread End, 2pc 25170-00 Adapters Male Thread End, split ring 25171-00 Quick Nut Nut with QN100-F Thread 25160-03 QN100 x Plug Cap Plug 25163-01 O-ring for QN100 #219 O-ring, FKM 25160-02 Connections #219 O-ring, viton Threaded QN100 x 3/4" NPT-F Thread 25164-01 Adapters 1" NPT-F x QN100M Bushing 25137-00 Boom Tube Half Clamp, for 1" SST (1.31" OD) 41591-00 Half Clamp, for 1-1/4" Tube 41590-00 Clamps **BEFV Cover Cap** 25175-10 Replacement BEFV Seal Repair Kit (2 valves) 25175-11 Parts BEFV Handle, Long 25175-13 BEFV Handle, Short 25175-03

25171-00

Split-ring

25160-02

For QN100 Connections

25160-03

25164-01

2x 41591-00

25137-00

QN100 Tee Fittings

Compact & lightweight sweep tees for any sprayer boom configuration.

Description	Part#	
QN100 Flare x QN100M x QN100M	25172-00	l
1" Hose x QN100M x QN100M	25168-00	I
1-1/4" Hose x QN100M x QN100M	25169-00	ľ

25169-00

25172-00

QN100 Hose Barb Fittings

Compact & lightweight hose barb fittings for any sprayer boom configuration.

Size/Style	Description	Part#
1" HB	QN100 x 1" HB, Straight	25166-01
x QN100	QN100 x 1" HB, 90° Sweep	25167-01
1-1/4"	QN100 x 1-1/4" HB, Straight	25160-01
Hose Barb	QN100 x 1-1/4" HB, 45° Sweep	25162-01
x QN100	QN100 x 1-1/4" HB, 90° Sweep	25161-01

QN100 & 1" NPT Boom End Flush Valves

Compact valve for full-drain flushing of booms.

	<u> </u>	
Type	Description	Part#
QN100	QN100 BEFV, Short Handle	25175-V0
QNTOO	QN100 BEFV, Long Handle	25175-LV0
1" NPT-F	1" NPT BEFV, Short Handle	25176-V0
I NPI-F	1" NPT BEFV, Long Handle	25176-LV0

25170-00

[2-piece female thread adapter]

#25170-01 [Female Thread] #25170-02 [Lock Sleeve]

1/2" Quick-Nut (QN50) Boom Fittings & Stainless Steel Tube

QN50 Fittings for a Conventional Sprayer Boom

Contact Wilger for Custom Boom Tube & Hole Configurations for your sprayer boom.

[CANADA] Wilger Industries Ltd. 1 (833) 242-4121 info@wilger.net

[USA] Wilger Inc. 1 (877) 968-7695 WilgerESC@WilgerESC.com

Example of a few possible configurations of 1/2" Quick-Nut (QN50) Sprayer Fittings

25120-02

Stainless Tube (SST) to Plug Cap

25120-02

25131-00

25120-03

25130-00

Sweep Tee to Stainless Tube (SST)

41580-00 25129-00 25120-02

Sweep 90° Quick-Nut (QN50) thread 25123-01 to Hose Barb 25120-02 25120-03 Sweep Tee to Hose Barb 25120-03 25121-01

QN50 Connectors & Components For QN50 Connections

25130-00

Easy to use boom end fittings and connectors to adapt 1/2" Wilger Stainless Steel Tubing (SST) to QN50 fittings.

72 Tringer Stammess Steel Tubing (SST) to arrest manager		
Component	Description	Part#
SS Tube End	Female Thread End, 2pc	25129-00
Adapters	Male Thread End, split ring	25130-00
Quick Nut	Nut with QN50-F thread	25120-03
Plug	QN50 x Plug Cap	25131-01
O-ring for QN50	#116 O-ring, FKM	25120-02
Connections	#116 O-ring, viton	25120-V2
Thread Adapters	QN100 x 1/4" NPT-F Thread	25127-01
Boom Clamp	Half Clamp, 1/2" SST (0.84" OD)	41580-00

25129-00

2-piece kit: #25129-01 [Nut] #25129-02 [Sleeve]

QN50 Tee & Hose Barb Fittings

25128-00 Sweep Tee

Compact & lightweight tee & hose barb fittings for any sprayer boom configuration.

Size/Style	Description	Part#
TEE	QN50M x QN50M x QN50M	25128-00
1/2" Hose	QN50 x 1/2" HB, Straight	25120-01
Barb	QN50 x 1/2" HB, 45° Sweep	25124-01
x QN50	QN50 x 1/2" HB, 90° Sweep	25122-01
3/4" Hose	QN50 x 3/4" HB, Straight	25121-01
Barb	QN50 x 3/4" HB, 45° Sweep	25125-01
x QN50	QN50 x 3/4" HB, 90° Sweep	25123-01

Case® Thin Wall Stainless (TWS) Tube Fittings

41400-03

25160-04

41403-00

Easy to use boom end fittings and connectors to adapt to 1" Case Thin walled stainless steel sprayer booms.

Component	Description	Part#
TMO Mala Tala	Male End Adapter, Left Thread	41400-04
TWS Male Tube End Adapter (3pc)	Male End Adapter, Right Thread	41400-05
End Adapter (Spc)	Male End Adapter, Binding Nut	41400-02
Coupler	TWS-F to QN100-F Coupler	41401-01
Quick Nut	TWS Nut, use with QN100 HB	41400-03
O-ring for TWS	#209 square O-ring, FKM	25160-04
Connections	#209 square O-ring, viton	25160-v4
Threaded	1" NPT-F x TWS-M Bushing	41403-00
Adapters	1" NPT-F x TWS-M Bushing kit w/ o-ring	41403-v0
Boom Clamp	Half Clamp, for 1" TWS (1.31" OD)	41591-00
	Flush Valve, Short Handle	41402-V0
Boom End Flush Valves (BEFV) &	Flush Valve, Long Handle	41402-LV0
	BEFV Seal Repair Kit (2 valves)	25175-11
Replacement Parts	BEFV Cover Cap	25175-10
nepiacement raits	BEFV Handle, Long	25175-13
	DEEV Handla Chart	25175 02

25175-10 piece Adapter TWS Male Thread #41400-04 [l eft] #41400-05 [Right] #41400-02 [Binding Nut]

TWS Flush Valves

Compact & Robust Full Drain Flush Valve

Adapting a TWS Flush Valve to 1" NPT-M End

A bushing kit can adapt to any 1" NPT-M pipe end

41403-v0 41402-V0

Hose Barb Fittings for TWS

TWS Connectors are compatible with QN100 Hose Barb Fittings & Accessories

QIVIO	o nood barb i ittiingo a nood	1001100
Size/Style	Description	Part#
Plug	QN100 x Plug Cap	25163-01
Adapters	QN100 x 3/4" NPT-F Thread	25164-01
1" HB	QN100 x 1" HB, Straight	25166-01
x QN100	QN100 x 1" HB, 90° Sweep	25167-01
1-1/4"	QN100 x 1-1/4" HB, Straight	25160-01
Hose Barb	QN100 x 1-1/4" HB, 45° Sweep	25162-01
x QN100	QN100 x 1-1/4" HB, 90° Sweep	25161-01

41400-01 25160-01 Assy 25160-04 41400-03

TWS to QN100 Coupler

QN100 Female 41401-01

Couples TWS-M and QN100M ends

Compact Handle

O-ring Seal (ORS) Fittings & Components

The O-ring Seel (OFS) Fifting Adventage **Superior Fittings** Straight or 90° Chemical 0.3BAR/0.7BAR Resistance Swivel Check Valves 360° Stronger 1/4" to 1" Hose Barb Outlets Compact **Fittings** No Threads Color-coded or Sealant **ORS Metering Orifices** Required Hose Barb 1 to 4-Outlet Stackable 50 Mesh

Full Line of Metering Orifices

Precision metering orifices for rates as low as 16L/ha

Standard FKM 0-ring Seals FKM o-rings are used to maximize

chemical resistance & durability.

Compatible with Flow Indicators

Wilger ORS fittings are used for both Flow Indicator & EFM systems

ORS to ORS Check Valves

Diaphragm check valves with an ORS-F outlet for in-line outlet control to minimize dripping

Dia. Check Valve

0.3BAR Manual On/Off 20551-P4

in-line strainer

ORS Manifolds

0.7bar Diaphragm Check Valve, 90°

Diaphragm check valves with a Combo-Jet outlet for spray tip or cap metering or spraying.

ORS to COMBO-JET Check Valves

& Adapters

Check Valve Style	90° Outlet	ı
Dia. Check Valve	20560-00	ı
0.7BAR Manual On/Off	20561-00	l
0.3BAR Manual On/Off	20561-P4	
Air-Off Operated	20562-00	
PWM/no-check	20563-00	
		4

ORS Hose Barb Inlets/Outlets

20552-00

O-ring seal hose barb inlets and outlets. Compatible with all ORS metering orifices.

Hose Barbs	Orientation	Part#
1/4"	Straight	20500-00
3/8"	Straight	20501-00
3/6	90°	20511-00
1/2"	Straight	20502-00
1/2	90°	20512-00
5/8"	90°	20514-00
3/4"	Straight	20503-00
3/4	90°	20513-00
1"	Straight	20504-00
'	90°	20515-00

ORS Outlet Adapters & Plugs

O-ring seal outlets with female threads, plugs and more. Compatible with all ORS metering orifices for metering flow.

20010 00	20010 00	20020
Type	Orientation	Part#
1/4" NPT-F	Straight	20519-00
1/4 NPI-F	90°	20518-00
ORS x Sq Lug	Straight	20549-00
ORS Plug	Straight	20529-00

ORS x Square Lug adapter adapts to any square lug nozzle cap (e.g. Teejet/Hypro/ Varitarget). ¹Ensure hoses connected are supported well

ORS End Caps & Adapters

O-ring seal end caps are used on any ORS-M ports

Style &	Size	Part#
End 0	Сар	20521-00
	3/8"	20544-00
Straight	1/2"	20545-00
Hose Barb	3/4"	20547-00
	1"	20548-00
Push-in Tube	1/4"	20540-00
(seals on O.D.)	5/16"	20541-00
(Seals Off O.D.)	3/8"	20542-00
	1/4"	20535-00
NPT-F Thread	3/8"	20536-00
	1/2"	20537-00
NPT-M Thread	1/4"	20530-00

ORS Push-in-Tube Outlets

O-ring seal quick-connect outlets that seal around the outside diameter of a tube. Compatible with ORS orifices

Push-in-tube Splitter

1/4" Straigh

O-ring Seal (ORS) Parts & Manifolds

PRO TIP: Lubricate ORS fittings before assembly

When assembling any flow indicator or 0-ring seal (ORS) parts, using a touch of lubricant (e.g. liquid silicone) on the O-ring makes assembly easy.

ORS In-line Strainer

In-line strainer with removable 50-mesh cartridge can be reversed for universal flow direction.

Replacement Strainer 20576-02

20576-00 Strainer Assembly [50 Mesh]

Description	Part#
ORS Strainer Assembly [50 Mesh]	20576-00
Replacement Strainer [50 Mesh]	20576-02
2" ORS Spacer Assy [no strainer]	20576-05

ORS Tees & Other Fittings

A variety of fittings for splitting manifolds, ORS-F outlets or other auxiliary functions.

1/4" NPT-F Port can be drilled out for pressure gauge installation

20526-00

20525-00

20523-0)(
[Port is block	œ

Description	Part#
90° ORS Elbow [M x F]	20520-00
ORS Tee w/ 1/4" NPT-F [M x M x F w/ 1/4" NPT-F]	20526-00
3/8" x Blind ORS Tee [Blind F x M x 3/8" NPT-F]	20523-00
3/8" NPT-F x ORS Tee [F x M x 1/8" NPT-F]	20524-00
2-Outlet ORS-F Splitter [FxFxM]	20527-00
1" NPT-F x ORS Tee [M x M x 1" NPT]	20525-00

O-ring Seal (ORS) Manifolds

ORS manifolds can be configured and plumbed to any size, shape or configuration to suit any application equipment needs such as liquid fertilizer manifolds, estate sprayer manifolds, or any other liquid manifold plumbing.

20571-00

20572-00

20573-00

Model	O-ring	Part#
1-Outlet Manifold	FKM	20571-00
1-Outlet Marillold	Body only	20571-01
2-Outlet Manifold	FKM	20572-00
2-Outlet Marillold	Body only	20572-01
3-Outlet Manifold	FKM	20573-00
3-Outlet Manifold	Body only	20573-01
4-Outlet Manifold	FKM	20574-00
4-Outlet Manifold	Body only	20574-01

Body only (no u-clips or o-rings)

Fittings Swivel 360°

No Threads or Sealant Required

Stronger, Compact **Fittings**

Replacement Parts for ORS & Flow Indicator Fittings

Replacement components for ORS Fittings/Kit

	Tiopiacomonic components for one rittings						
	Product	Type/Material	Part#				
	Ball Retainer	Polypro	20460-02				
U-clip		302 SS	20460-02				
	Flow Indicator Kit	Manifold Feed	20460-11				
	w/o Indicator Body	Isolated Feed	20480-02				
	O-rings for	FKM	20460-03				
	ORS fittings	VITON	20460-15				
	O-rings for	FKM	40225-04				
	metering orifices	VITON	40225-05				

40225-04 (#20460-07), Red Glass Ball (#20460-06), 1/2" SS Ball (#20460-05

20460-11* 20460-03 *Manifold Kits include: Ball Retainer (#20460-02), 0-ring (#20460-03) 2x U-clips (#20460-04), Green Ball (#20460-08), Red Plastic Ball

Mounting Clamps for ORS

Two hole mounting clamps with 1/4" bolt-mount for ORS manifolds and flow indicators

MEM

Tube Size	i iype	Part#
1" Sq Tube	302 SS	40550-SS
1-1/4" Sq Tube	302 SS	40551-SS
1-1/2" Sq Tube	302 SS	40552-SS

O-ring Seal (ORS) Metering Orifices & Charts

Precise metering orifices for metering liquid fertilizers, or chemicals. The easier-to-handle orifices fit in any 0-ring seal (ORS-M) fitting port, and cannot be inserted backwards. Available in precision molded color-coded sizes or custom drilled sized orifices.

metering orifice selection Available on TRY IT FREE AT WILGER App Store TIP WIZARD

Use TIP WIZARD for

Simply input rate, speed & spacing, and get the best orifice for the job.

21XXX-00

Metering Orifice

type, seal & ORS Orifice Part#

Color

21500-V01

Molded ORS Orifice | Custom Drilled Orifice | Blank Orifice/Plug VITON O-ring FKM/viton O-ring FKM/viton O-ring 21XXX-00/21XXX-V0 21000-00/2100-V0 21500-VXXX Color-coded' Black

Calculating required flow for metering orifice selection

To determine the flow rate (or application rate), use the following equations & density conversion chart:

W = Outlet Spacing (meters) conv = Conversion Factor based on specific gravity/weight of liquid

(per outlet)

Litres/minute = L/HA x kph x W x conv

600 x L/min (per outlet)

kph x W x conv EASY-TO-USE ORS orifice and ball selector calculator available @ www.WILGER.NET

Solution Weight (lbs/ us gallon)	Specific Gravity	Conversion Factor (conv)		
8.34 (Water)	1.00	1.00		
10.65 (28-0-0)	1.28	1.13		
11.65 (10-34-0)	1.39	1.18		

												11.0	5 (10-34-0	J) 1.3	J 1.	18
ORS Orifice Flow Rate (Litres/minute)						ORS Orifice			Flow Rat	te (Litres	s/minute)				
L	Part #	1 _{BAR}	1.5 _{BAR}	1.75 _{BAR}	2 BAR	2.25 _{BAR}	2.5 BAR	3 bar	Part #	1 _{BAR}	1.5 _{BAR}	1.75 _{BAR}	2 BAR	2.25 _{BAR}	2.5 BAR	3 bar
L	21009-XX	0.024	0.029	0.031	0.033	0.036	0.037	0.041	21075-XX	1.579	1.934	2.089	2.233	2.073	2.497	2.735
L	21011-XX	0.037	0.045	0.049	0.052	0.055	0.058	0.064	21078-XX	1.763	2.160	2.333	2.494	2.315	2.788	3.054
	21013-XX	0.050	0.061	0.066	0.071	0.075	0.079	0.087	21500-V08	1.816	2.224	2.402	2.568	2.384	2.871	3.145
	21015-XX	0.066	0.081	0.087	0.093	0.099	0.104	0.114	21081-XX	1.869	2.289	2.472	2.643	2.453	2.955	3.237
	21500-V003	0.068	0.084	0.090	0.097	0.103	0.108	0.118	21083-XX	2.053	2.514	2.716	2.903	2.695	3.246	3.556
3	21018-XX	0.095	0.116	0.125	0.134	0.142	0.150	0.164	21086-XX	2.132	2.611	2.820	3.015	2.799	3.371	3.692
Š	21500-V005	0.113	0.139	0.150	0.160	0.170	0.179	0.196	21089-XX	2.237	2.740	2.959	3.164	2.937	3.537	3.875
1	21020-XX	0.118	0.145	0.157	0.167	0.178	0.187	0.205	21500-V10	2.290	2.804	3.029	3.238	3.006	3.620	3.966
1	21022-XX	0.139	0.171	0.185	0.197	0.209	0.221	0.242	21091-XX	2.395	2.933	3.168	3.387	3.144	3.787	4.148
8	21500-V007	0.153	0.187	0.202	0.216	0.229	0.241	0.264	21093-XX	2.500	3.062	3.308	3.536	3.283	3.953	4.33
d	21025-XX	0.179	0.219	0.237	0.253	0.268	0.283	0.310	21096-XX	2.684	3.288	3.551	3.796	3.524	4.245	4.65
4	21026-XX	0.197	0.242	0.261	0.279	0.296	0.312	0.342	21500-V125	2.842	3.481	3.760	4.020	3.732	4.494	4.92
	21027-XX	0.208	0.255	0.275	0.294	0.312	0.329	0.360	21102-XX	2.974	3.642	3.934	4.206	3.904	4.702	5.15
F	21028-XX	0.224	0.274	0.296	0.316	0.336	0.354	0.387	21104-XX	3.079	3.771	4.073	4.355	4.043	4.869	5.33
	21500-V01	0.229	0.280	0.303	0.324	0.343	0.362	0.397	21107-XX	3.342	4.094	4.422	4.73	4.388	5.285	5.79
X	21031-XX	0.290	0.355	0.383	0.409	0.434	0.458	0.501	21500-V15	3.421	4.190	4.526	4.84	4.492	5.410	5.93
É	21500-V015	0.342	0.419	0.453	0.484	0.513	0.541	0.593	21110-XX	3.527	4.319	4.665	4.99	4.630	5.576	6.11
	21035-XX	0.368	0.451	0.487	0.521	0.553	0.583	0.638	21113-XX	3.737	4.577	4.94	5.29	4.907	5.909	6.47
3	21037-XX	0.395	0.483	0.522	0.558	0.592	0.624	0.684	21116-XX	3.921	4.803	5.19	5.55	5.148	6.200	6.79
7	21039-XX	0.447	0.548	0.592	0.633	0.671	0.707	0.775	21120-XX	4.053	4.964	5.36	5.73	5.321	6.408	7.02
	21500-V02	0.474	0.580	0.627	0.670	0.711	0.749	0.821	21125-XX	4.474	5.480	5.92	6.33	5.874	7.074	7.75
3	21041-XX	0.500	0.612	0.662	0.707	0.750	0.791	0.866	21500-V20	4.553	5.576	6.02	6.44	5.978	7.199	7.89
	21043-XX	0.526	0.645	0.696	0.744	0.691	0.832	0.912	21128-XX	4.658	5.71	6.16	6.59	6.116	7.365	8.07
ŝ	21500-V025	0.579	0.709	0.766	0.819	0.760	0.915	1.003	21130-XX	4.843	5.93	6.41	6.85	6.358	7.657	8.39
8	21046-XX	0.605	0.741	0.801	0.856	0.795	0.957	1.048	21136-XX	5.422	6.64	7.17	7.67	7.118	8.572	9.39
8	21047-XX	0.632	0.774	0.836	0.893	0.829	0.999	1.094	21140-XX	5.764	7.06	7.62	8.15	7.567	9.113	9.98
ğ.	21049-XX	0.684	0.838	0.905	0.968	0.898	1.082	1.185	21144-XX	5.974	7.32	7.90	8.45	7.844	9.446	10.35
Ť	21500-V03	0.684	0.838	0.905	0.968	0.898	1.082	1.185	21147-XX	6.132	7.51	8.11	8.67	8.051	9.696	10.62
	21051-XX	0.737	0.903	0.975	1.042	0.967	1.165	1.276	21150-XX	6.58	8.06	8.70	9.30	8.638	10.403	11.40
7	21052-XX	0.763	0.935	1.010	1.079	1.002	1.207	1.322	21152-XX	6.79	8.32	8.98	9.60	8.915	10.736	11.76
ž	21055-XX	0.869	1.064	1.149	1.228	1.140	1.373	1.504	21156-XX	7.08	8.67	9.37	10.01	9.295	11.194	12.26
(21500-V04	0.921	1.128	1.219	1.303	1.209	1.456	1.595	21161-XX	7.45	9.12	9.85	10.53	9.779	11.776	12.90
ŀ	21060-XX	1.026	1.257	1.358	1.452	1.348	1.623	1.778	21166-XX	7.82	9.57	10.34	11.05	10.262	12.359	13.54
Š	21061-XX	1.053	1.289	1.393	1.489	1.382	1.665	1.823	21172-XX	8.58	10.51	11.35	12.13	11.264	13.566	14.86
	21063-XX	1.132	1.386	1.497	1.600	1.486	1.789	1.960	21177-XX	9.11	11.15	12.05	12.88	11.955	14.398	15.77
2	21500-V05	1.158	1.418	1.532	1.638	1.520	1.831	2.006	21182-XX	9.50	11.64	12.57	13.44	12.474	15.022	16.46
	21064-XX	1.158	1.418	1.532	1.638	1.520	1.831	2.006	21187-XX	10.05	12.31	13.30	14.22	13.199	15.896	17.41
	21065-XX	1.184	1.450	1.567	1.675	1.555	1.873	2.051	21196-XX	11.16	13.67	14.76	15.78	14.651	17.644	19.33
Ĭ	21067-XX	1.263	1.547	1.671	1.787	1.659	1.997	2.188	21205-XX	12.08	14.80	15.98	17.08	15.860	19.100	20.92
	21500-V06	1.369	1.676	1.810	1.935	1.797	2.164	2.370	21213-XX	13.00	15.92	17.20	18.39	17.069	20.557	22.52
	21070-XX	1.395	1.708	1.845	1.973	1.831	2.205	2.416	21218-XX	13.58	16.63	17.96	19.21	17.829	21.472	23.52
	21073-XX	1.500	1.837	1.985	2.122	1.970	2.372	2.598	21234-XX	15.82	19.37	20.92	22.37	20.766	25.009	27.40
y									21250-XX	18.24	22.34	24.13	25.79	23.945	28.838	31.59

Wilger Visual Ball Flow Indicators

The Flow Incleator Advantage

See Any Application Accurately

1/4" Bolt mount on each column **Fittings** Swivel 360°

Clear Sight Column

Superior Chemical Resistance

Simple. without Electronics

No Threads or Sealant Required

Manual ON/OFF Check Valves
Easy to turn off for maintenance or use liquid kits on alternate spacing

Larger Metering Orifices Easier handling & cleaning

> Consistent Metering & Easy Cleaning

Ball Suspended Higher Indicates over flow or leaf

Desired Flow

Ball Suspended Lower

Indicates blockage or plug

Simple Operation. Critical Feedback.

Example of flow indicator function; Overlay colors are for visual purposes only

Flow Indicators are used on Planting Equipment & Sprayers to indicate relative flow blockage or overage.

Manifold Feed - Ball Flow Indicators

For monitoring many lines from a single feed (e.g. Liquid fertilizer kits for a planter)

Retainer	
Sight Column	
Red Glass Ball	
4" Bolt-Mount Hole	
tackable 3S-F port for inlet	

Model	Kit lype*	Part#
Ultra Low Flow	Bulk Kit	20475-BULK
	Bagged Kit	20475-00
[0.037-0.910 L/min]	Body Only	20475-01
Low Flow	Bulk Kit	20470-BULK
	Bagged Kit	20470-00
[0.19-2.46 L/min]	Body Only	20470-01
Standard Flow	Bulk Kit	20460-BULK
[0.26-10.22 L/min]	Bagged Kit	20460-00
[U.20-1U.22 L/MIN]	Body Only	20460-01

*Manifold Kits include: Indicator Body, Ball Retainer (#20460-02), O-ring (#20460-03), 2x U-clips (#20460-04), Green Ball (#20460-08). Red Plastic Ball (#20460-07), Red Glass Ball (#20460-06), 1/2" SS Ball (#20460-05)

Flow Indicator & O-ring seal (ORS) Connection Specifications*

Max Operating Pressure: 100psi / 7BAR Max Metered Flow Rate:

30 L/min per column Maximum Operating Temp: 85°C O-ring Seals: FKM (std) / Viton U-clip: Stainless Steel (302)

ORS Fittings: Glass-reinforced Polypropylene Flow Column Material: TPX™ (Polymethylpentene)

Isolated Feed - Ball Flow Indicators

For monitoring single lines from individual feeds (e.g. Squeeze pump monitoring, chemical injector pumps)

Model	Kit Type**	Part#		
Low Flow	Bulk Kit	20490-BULK		
[0.19-2.46 L/min]	Bagged Kit	20490-00		
[0.19-2.46 L/min]	Body Only	20490-01		
Standard Flow	Bulk Kit	20480-BULK		
[0.26-10.22 L/min]	Bagged Kit	20480-00		
[0.26-10.22 L/min]	Body Only	20480-01		

**Isolated Kits include: Flow Indicator Body, Ball Retainer (#20460-02), U-clip (#20460-04), Green Ball (#20460-08), Red Plastic Ball (#20460-07), Red Glass Ball (#20460-06), 1/2" Stainless Ball

Inlet feed uses Combo-Jet cap. Refer to COMBO-JET caps & adapters.

How to Tell Columns Apart? Check the top of the column

(Required Storage for Flow Indicator Columns

Wilger Flow Indicator columns are made of a specialty UV-stabilized compound (TPX™) that maximizes chemical resistance, providing compatibility for a huge range of chemical applications As with any plastic, UV exposure degrades the flow indicator columns.

To maximize flow indicator column clarity & longevity, completely cover

the flow indicator columns from UV exposure (sun/etc.) when not in use.

If a lighter ball is suspended too high, using the next heavier ball below can help cover changes in application rates or speeds. Red Celcon Ball Lower Rate/Speed 🗸

Red Glass Ball Higher Rate/Speed

Wilger Visual Ball Flow Indicators - Balls & Setup Guide

Flow Indicator Balls & Selection Chart

Weighted balls are used inside flow indicator columns and within the operational flow range, will suspend within the column, showing relative flow rate to other flow columns.

Ball Description & Color	Part #	Flow Indicator Columns & Flow Ranges*			
	Fail #	Ultra Low Flow	Low Flow	Standard Flow	
Orange Polypropylene Ball*	20460-13	0.037-0.151 L/min	0.19-0.45 L/min	0.26-0.95 L/min	
Green Polypropylene Ball*	20460-08	0.037-0.151 L/min	0.19-0.45 L/min	0.26-0.95 L/min	
Red Celcon Ball*	20460-07	0.075-0.23 L/min	0.23-0.61 L/min	0.38-1.32 L/min	
White Celcon Ball*	20460-18	0.075-0.23 L/min	0.23-0.61 L/min	0.38-1.32 L/min	
Pink Celcon Ball*	20460-14	0.075-0.23 L/min	0.23-0.61 L/min	0.38-1.32 L/min	
Red Glass Ball	20460-06	0.23-0.49 L/min	0.45-0.98 L/min	0.79-2.73 L/min	
1/2" Stainless Steel (302) Ball	20460-05	0.49-0.91 L/min	0.68-2.46 L/min	1.51-6.44 L/min	
7/16" Stainless Steel (302) Ball	20460-10	n/a	n/a	3.78-10.22 L/min	

Applying Dark Fertilizers & Variable Rate Applications

With some liquid fertilizers and products being darker (e.g humic acid content), consider a few tips that may help visual representation of flow

For Red Liquids

(e.g. Paralign Fertilizer)
White backboard for improved visibility.
White celcon ball for red

For Dark Liquids

(e.g. Humic Acid)
Pink celcon ball for black
& dark liquids.

For Variable Rate

Considering using two balls to better illustrate changes in flow rate. Select a lighter ball for the lower rate, and heavier for the higher rate

*Density/Viscosity of liquid used can effect operating range. In very dense liquids, balls may float.

Ball Selection Example

Liquid Density: 1.278 kg/L

Speed: 8 kph

Outlet Spacing: 76cm

Ultra-Low Flow Rate: 40L/Ha Flow Rate: 0.458 L/min Ball: Red Glass

G

Low Flow Rate: 100L/Ha Flow Rate: 1.146 L/min Ball: 1/2" Stainless

Standard Flow Rate: 200L/Ha Flow Rate: 2.292 L/min Ball: Red Glass

Guide to Building a Liquid Kit with Flow Indicator Manifolds

STEP Select: Manifold-Feed or Isolated-Feed Style Flow Columns

Choose the style of flow column that suits the application equipment being monitored

STEP 2 Determine Flow Indicator Column Size (e.g. Ultra Low Flow, Low Flow, Standard Flow)

Depending on the flow rates required, select the flow column that would provide the best fit to the required flow rate or range. Usually this is accomplished by finding a column size that has your flow rate towards the middle of the range or higher.

STEP © Select: Flow Indicator Balls to use

Consult the ball flow chart to determine which balls should be used. It can be optional to use two balls to illustrate a flow rate range.

STEP 4 ORS Check Valves [Optional]

A variety of check valves are available. Typically an ORS to ORS check valve would be used unless adapting a manifold to combo-jet caps. One check valve is required per flow indicator.

STEP 5 ORS Inlet Feeds, Tees, & Strainers

Determine how many manifolds are required, whether the manifolds are fed with a Tee fitting, as well as whether an in-line strainer will be added to each manifold. Determine the size & type of inlet fitting. One set of inlet/tee/strainer is required per manifold.

STEP © ORS Metering Orifices [Optional]

Any metering manifold should have a means to meter the flow for each row to keep rows consistent. Without a metering orifice, the flow rates between rows can vary greatly. One metering orifice would be required per flow indicator column.

STEP 🕖 ORS Outlet

Select the size, and style of outlet to be used for each row of product. Consider applying a small bit of lubricant (e.g. liquid silicone) on the o-ring to air in easy installation of outlets and other ORS fittings. The outlet would hold the ORS metering orifice, if used.

STEP 💿 ORS End Caps & Adapters

A variety of end caps are available as adapters which can be used for many situations, but typical an ORS end cap would be used. Two end caps are required per manifold if a Tee fitting is used.

Do you plant at night or in low visibility? Take a look at Wilger's Electronic Flow Monitoring (EFM) System

Wilger's row-by-row flowmeter uses the same ORS parts and manifolds, and can be simply added in-line for existing manifolds.

Simply add a flowmeter for each row, and connect the electronic harness to see actual flow rate on each row (up to 196 rows), for flow rates of 0.15-5.8 L/min.

Flowmeter can also be installed on flow indicators to provide greater accuracy

Wilger Electronic Flow Monitoring System

egaliavia grikolinoM woFl einerfeele entr

See Any Application with Row-by-Row Accuracy

The Wilger electronic flowmeter (EFM) is a serviceable flowmeter designed & built specifically for agricultural chemical & liquid applications.

Fittings Swivel 360°

Crystal Clear Flowmeter

Superior Chemical Resistance

Perfect for Low Visibility

High Accuracy Flowmeter

Patented Flowmeter Jets Canadian Patent No. 2951789 AUS Patent No. 2017376849 U.S. Patent No. 10.845,228

Crystal Clear Flowmeters Enables easy system troubleshooting & verification

Monitors Huge Flow Range Accurately measures flow rates

Accurately measures flow rates of 0.15-5.8 L/min per row How It Works

High Resolution Hall-Effect Sensor & Ceramic Magnet combo provide accurate pulse frequency to determine flow

** Wilger Flow Monitoring System v2.6.4 Starter **Starter** **Total: A180 L/Min Reset: 1.00 L/Da August A180 L/Min Total: A180 L/Min Reset: 0.00 L/Da August A180 L/Min Total: A180 L/Min Reset: 0.00 L/Da August A180 L/Min Reset: 0.00 L/Da August A180 L/Min Reset: 0.00 L/Da August A180 L/Min Reset: 6.3 L/Min Reset: 6.3 L/Min August A180 L/Min Total: A1 L/Min Reset: 6.3 L/Min August A180 L/Min Total: A1 L/Min Reset: 6.3 L/Min August A180 L/Min Total: A1 L/Min L/Min Total: A1 L/Min L/Min L/Min L/Min Total: A1 L/Min L/

FREE EFM APP
POWERED BY AGTRON

The Electronic Flow Monitoring system (powered by Agtron) requires an Android 10 OS Tablet or newer

Trouble-free Connectors

Keyed Deutsch connectors ensure weather-sealed wiring

Monitor up to 3 Products

Simultaneously monitor up to 3 products within the same system

Monitor Any Sized Equip.

Monitor up to 200 rows or outlets on any equipment

Custom High/Low AlarmsCustomize threshold alarms

Custom Screen LayoutsCustomize screen layouts
between products, sections,
or any other way

Chemical Resistance Clear TPX material provides visual & non-stick surface

iai & HUH-Stick Sulfat

Easy RetrofitEasily retrofits to any existing ORS or Flow Indicator Fittings

Simple Harnessing Composed of an ECU with

dairy-chained product nodes & sensors

WIFI communication

ECU generates WIFI straight into the cab

Build your Electronic Flow Monitoring System with help from www.wilger.net

Use the new EFM system parts kit builder available at www.wilger.net. Simply input your implement size and layout and receive a parts list & quote. It just takes a minute.

Need help with EFM system SETUP, USE & Troubleshooting? Check www.wilger.net

EFM System Manual

The manual is accessible online (wilger.net) and within the EFM app via the (?) button. It contains Setup, Troubleshooting, Considerations, Maintenance and more.

Video Setup Guide

The video describes in detail considerations and how to reference sensor locations properly and usage in the EFM system app.

Online Troubleshooting

The dedicated page on the website has the most common recent fixes, guides, and troubleshooting information.

Check it for quick troubleshooting to save time.

Wilger Electronic Flow Monitoring System Components

Electronic Flowmeters & Jets

A clear flowmeter that connects to any ORS outlets, with an accurate flow range of 0.15-5.8 L/min, using patented flow stabilizing jets.

20580-00 EFM KIT

Product

Electronic Flowmeter Body

[0.15-5.8 L/min

Replacement Jets

(without 50 mesh

snap-in strainer)

20580-06 Body Assembly

UNISSOMAD ERWYARD GEROOM ¹Easier removal & insertion shipping in 2024

Jets now include a lip for easier insertion and removal without

Description Flowmeter Assy Kit

Body Assembly (no jets)

Body Only (clear plastic)

Blue (0.68 to 3.71 L/s

en (up to 0.45 L/MIN

Required Storage for Flowmeters Wilger Flowmeters are made of a specialty UV-stabilized compound (TPX") that maximizes chemical resistance, providing compatibility for a huge range of chemical applications.

20580-00

20580-06

20580-01

20581-01

20581-03

20581-05

20581-07

To maximize flowmeter clarity & longevity, completely cover the flowmeters from UV exposure (sun/etc.) whenever possible.

Electronic Flowmeter Manifolds

Pre-assembled manifolds [1-4 Outlets] with a flowmeter and check valve. Simply assemble manifolds, add inlet/outlets, caps and sensor cables.

20644-00 Four Outlet EFM Manifold Kit w/ Check Valve

20634-00 0.3bar check valves available: change '-00' to '-P4'. For ultra-low flow (<0.01 us gpm), 0.3bar may be required.

90°

DEMO ECU & Small Planter Kit (16 or less rows, non-expandable)

The following is a Compact ECU DEMO unit, which can be used for showroom/demonstrations, but also functional for planters with 16 rows or less being monitored. The CAN to POWER/USB adapter can be used where WIFI is not an option (tradeshows, etc.). The unit also broadcasts via WIFI.

Product	Description of DEMO Kit Parts	Part#
DEMO ECU	DEMO ECU with built-in 16CH node. One per Demo unit (requires 12v x 1.25 amp)	20625-01
DEMO 16CH Harness	DEMO ECU Harness, with A/B/C/D for up to 4 quad- sensor cables to be connected	20625-02
DEMO Power Supply Harness	CAN to USB (for wired tablet without WIFI) & 12v Power Cable (2-wire, 2m length). USB-A port is powered to supply tablet power.	20625-03
Quad-Sensor Cable	A normal quad-sensor cable, used in any Wilger EFM systems via 6-pin connector. Connects for the A/B/C/D of 20625-02. Order 4x 20585-00 for full 16 sensors.	4x 20585-00
Antenna (7")	If ECU connection is via WIFI, an antenna should be used to connect to the tablet.	20603-03
EFM Manifolds	1,2,3, or 4-outlet manifolds with check valves and an included EFM flowmeter. Simply order inlet/outlets/tee and end caps to complete manifold.	20644-00 (4-outlet)

Example 16-row manifold for demonstration

EFM DEMO System Parts Checklist

ELECTRONICS Parts 1x DEMO ECU (#20625-01)

1x Demo Product Harness (#20625-02) 1x ORS Tee (#20526-00)

1x Antenna (#20603-03)

4x Quad-sensor cable (4x #20585-00)

☐ 1x Android Tablet & Mount (non-Wilger) ☐ 16x Metering Orifice (#21500-v03) (e.g. Samsung Tab A8)

PLUMBING Parts

4x 4-Outlet Manifolds (#20644-00)

1x Demo Power/USB Cable (#20625-03) 1x 90° 1/2" Hose Inlet (#20513-00) 16x 1/4" Push-in-tube (#20516-00) 2x End Cap (#20521-00)

1x 5GPM Electric pump (non-Wilger)

Small water tank w/ plumbing

Compact ECU *parts not to scale* 20625-01

20625-03 CAN to 12v Power Harness

Want to show what the system looks like, without a pump? Download the app, enter info, and plug in some example sensor information, and run the app in TEST/ DEMO mode. (Simulated info) Contact Wilger for more info.

Connects to A / B / C / D 4x 20585-00 20585-00

Quad-sensor cable

Wilger Electronic Flow Monitoring ECUs & Electronics

Base Electronic ECU & Kits for EFM Systems (expandable up to 196 rows/sensors)

Electronic Control Units (ECU) & components used in EFM systems. ECUs are used to monitor up to 196 outlets, across up to 3 products.

		•
Product	Kit Includes	Part#
ECU100 Base Kit	ECU100, 6m 12v Battery Harness (with fuse), Terminator, Antenna	20603-00
ECU200, CAN to 12v Harness, 6m 12v Battery Harness (with fuse), ECU200 Node Harness (#20606-02), Terminator, Antenna, 4x Quad- sensor cables (#20585-00)		20606-00
ECU Splitter Kit ECU Splitter Cable, Terminator		20605-00
ECU/Node to Node	3.5m Extension Harness (Node to ECU/Node)	20616-12
Extension Harness	7.3m Extension Harness (Node to ECU/Node)	20616-24

NEW ECU100 or ECU200? Whats the difference?

ECU100 and ECU200 share identical function as a controller. Both create their own WIFI signal to the tablet in the cab, sending row-by-row flowmeter information. They differ somewhat in the first node connected, and potentially the use of other components, the harnesses, and cables used. The ECU200 effectively integrates the first 16CH node, as well as provides a CAN plug for future-proofed connections.

ECU Type	ECU100	ECU200			
Combined Node?	No integrated 16CH node	First 16CH node built-in			
Expandable Size?	Yes, up to 196 sensors	Yes, up to 196 sensors			
Power Cable	2-pin 12v PWR harness	CAN to 2-pin 12v PWR harn.			
Compatibility	Both are compatible to all EFM system components				

- ① Connects to ECU100 or ECU200.
- 2 If ECU100, first node is Node 1. If ECU200, first node is Node 2. (As ECU200 has built-in Node1)
- Onnects to 2nd node series loop. Node # determined by last node in 1st series loop.

Using an ECU Splitter Cable with ECU100 - Navigating 'Node Numbers' & Locations

Example: NODE 3 was designated #3 by position, due to NODE 2 closing the series with a terminator.

Wilger Electronic Flow Monitoring System Components

16 Channel (16CH) Product Node Kits & Components

16CH Product nodes provide communication between sensors and ECU.

20611-02 16CH NODE HARNESS

20611-01

Product	Description	Part#		
16CH Node Kit	incl. 16CH Node, 16CH Harness, 4x Quad-sensor cables	20621-00		
Quad-Sensor Cable	4-Sensor Cable (55cm long) for 16CH Node	20585-00		
16CH Node/Harness	incl. 16CH Product Node, 16CH Node Harness	20611-00		
16CH Harness Cap	16CH Harness Cover Cap	20612-00		
Sensor Cover Cap	Covers a single sensor on a quad-sensor cable	20585-01		
Node to Quad-Sensor	1.8m Extension Cable (16CH Harness to quad-sensor cable)	20615-06		
Extensions	3.6m Extension Cable (16CH Harness to quad-sensor cable)	20615-12		

Capping Unused Connections & Sensors

For proper function of your EFM system, each unused connection must be sealed with a node harness cover cap, sensor cap, or terminator. Unsealed Connections have increased chance of shorts, electrical shock, or damage to the system or equipment.

Unused Node Connections

to Harness

Connects to next

node in series

Unused Sensor Cap unused

(or previous node)

Connects to (4)

quad-sensor cables

55cm Quad-Sensor Cables (for use with 16CH Nodes)

(4x 20585-00 included in 16CH node kit)

Channel (4CH) Product Node Kits & Components

4 Channel Product Nodes & kits provide communication between sensors and ECU. Sensor cables cannot be interchanged between 16CH and 4CH node harnesses. 4CH nodes and sensors are available in limited stock, as Wilger is transitioning to using the 16CH node and components as standard.

❸8-pin IN

Product	Description	Part#
4CH Node Kit	incl. 4CH Node, 4CH Harness, 4x 6" single-sensor cables	20620-00
4CH Node/Harness	incl. 4CH Product Node, 4CH Node Harness	20608-00
4CH Harness Cap	4CH Harness Cover Cap	20609-00
Single-Sensor	15cm single-sensor Cable for 4CH Node harness	20584-00
Cables (lim. qty)	300cm single-sensor Cable for 4CH Node harness	20584-10

Capping Unused Connections

For proper function of your EFM system, each unused connection must be sealed with a 4CH node harness/sensor cover cap, or terminator.

Unused Sensor Connections Cap unused 4CH node harness connections #20609-00

Cap all 'last node in series' connections #20604-00

ECU Splitters, Extended Harnesses & Cables

A variety of harnesses available for alternate EFM system configurations or replacement cables and caps

Product	Description	Part#		
12v Power Extension	Extends 2-pin power connection by 10m	20603-07		
Antenna Extension	Extends connection to ECU antenna, 10m length	20603-05		
1.2m quad-sensor cbl	1.2m Long Quad-sensor cable (1.2m/0.5m/0.5m/1.2m)	20585-04		
3m Single Sensor Cbl	3m long single sensor cable	20584-10		
Node to Node Extensions	3.6m Extension Cable (8-pin Harness male to 8-pin female)	20616-12		
	7.2m Extension Cable (8-pin Harness male to 8-pin female)	20616-24		
Node to Quad-Sensor	1.8m Extension Cable (16CH Harness to quad-sensor cable)	20615-06		
	3.6m Extension Cable (16CH Harness to quad-sensor cable)	20615-12		
	7.2m Extension Cable (16CH Harness to quad-sensor cable)	20615-24		

10m Antenna Extension 10m co-axial antenna extension cable to bring ECLI antenna closer to the 20603-05 10m Extension ECU antenna has 30m range (15m one-v

20585-04 Quad-sensor cable (for 16CH node only) == 1.2m 20584-10 3m single sensor (for 4CH node only)

Flowmeter Component Parts

Electronic flow monitoring system parts and components are easily replaceable. For individual component parts that were not listed in the above product breakdowns, find the below.

EFM, Body Assy, TPX, ORS (no jets, body assy only) 20580-06

20580-01 EFM, Body Only, TPX 20580-02

EFM, Module c/w O-ring (no sensor) 20580-08 EFM, Impeller Assembly (20580-09 + 20580-10)

20580-10 EFM, Impeller Magnet, Ceramic

20580-11 EFM, Impeller Axle Pin

20580-13 EFM, O-Ring, #119, VITON® (for EFM module) 20583-00 EFM Sensor Cable, Single w/o Connector

20585-01 EFM sensor rubber cover (for unused sensor cables)

20583-00*

*Non-stocked/Custom Order

20580-02

20580-06

Wilger Electronic Flow Monitoring System ECU100 Example

ECU100; Component Checklist for Wilger's Electronic Flow Monitoring System

As equipment & implements greatly vary, this is a simplified approach assuming the implement is fairly standard and evenly spread, with the manifold centrally located

It may be cost effective to move manifolds from the wings of the implement, to the center.

Order 1 ECU100 kit per system. (#20603-00)

outlets by 16. Round up to nearest whole number. Order that many 16CH Node kits. (#20621-00) Add the # of outlets (including multiples for monitoring multiple products). Divide the total # of

Order 1 EFM assembly kit (#20580-00) per outlet (incl. multiples for monitoring multiple products) 4CH Node kits can be effective for 'extra' outlets in systems, but 16CH node kits are typically cost effective. Alternatively, order EFM manifold kits (#20631-00 to #20634-00) to fit your requirements for sections

Order 1 ORS Outlet (Page 16) & 1 ORS Check Valve (#20551-00) per EFM body. Order manifolds & plumbing components (& end caps) suited for the implement size. [Optional if metering orifice req'd] **Order an ORS orifice for each outlet**, ensure proper metering orifice size for each rate. Use Tip Wizard @ www.wilger.net or via app, to ensure proper sizing.

☐ 1x ECU100 KIT per system

1x ORS Manifold Outlet per outlet

1x ORS Outlet Fitting per outlet

1x ORS Check Valve per outlet

1x 16CH Node Kit per 16 outlets 1x Flowmeter (EFM) per outlet Extension harnesses if req'd 1x Android Tablet [Android 10 0S or newer. Avoid non-brand name tablets that may not be running full 0S)]

For more information, start the conversation on building your EFM system with your Wilger dealer, and for more pictures/information, visit our website at: www.WILGER.NET 1x Metering Orifice per outlet [or alt.]

1x End Cap per manifold [2x if center Tee]

1x Inlet Feed or Tee per manifold

EFM VIDEO TUTORIALS - Setting up EFM App on Android Tablet

app on your Android Tablet. Videos on YOUTUBE, or accessible from www.WillGER.ner Make sure to take advantage of video tutorials on initial setup and planning of EFM system

Build

Use the new EFM system parts kit builder available at www.wilger.net. Simply input your implement size and layout and receive a parts list & quote. Simple as that.

Wilger Electronic Flow Monitoring System ECU200 Example

ECU200; Component Checklist for Wilger's Electronic Flow Monitoring System

Since the ECU200 includes the FIRST 16CH product node, it changes the ordering checklist slightly.

Order 1 ECU200 kit per system. (#20606-00)

Add the # of outlets (incl. multiples for monitoring multiple products). **First subtract 16 outlets from** the total (as the first 16 are included with ECU200), then divide the total # of outlets by 16. Round up to nearest whole number. **Order that many 16CH Node kits**. (#20621-00) 4CH Node kits can be effective for 'extra' outlets in systems, but 16CH node kits are typically cost effective.

Order 1 EFM assembly kit (#20580-00) per outlet (incl. multiples for monitoring multiple products) Alternatively, order EFM manifold kits (#20631-00 to #20634-00) for pre-built manifolds with flowmeters installed. (1)

Order manifolds & plumbing components (& end caps) suited for the implement size. Order 1 ORS Outlet & 1 ORS Check Valve (#20551-00 style) per EFM body

[Optional if metering orifice req'd] **Order an ORS orifice for each outlet**, ensure proper metering orifice size for each rate. Use Tip Wizard @ www.wilger.net or via app, to ensure proper sizing.

G

ia WIFI to Android Table

No Data plan reg'o

1x End Cap per manifold [2x if center Tee] 1x ORS Manifold Outlet per outlet 1x Metering Orifice per outlet [or alt.] 1x Inlet Feed or Tee per manifold 1x ORS Outlet Fitting per outlet 1x ORS Check Valve per outlet PLUMBING Parts 1x ECU200 KIT per system, incl. 1st 16CH 1x Android Tablet [Android 8.0 0S or newer] 1x 16CH Node Kit per adtl. 16 outlet 1x Flowmeter (EFM) per outlet Extension harnesses if req'd **ELECTRONICS Parts**

For more information, start the conversation for your EFM system with your WILGER, NET Wilger dealer, and for more pictures/information, visit our website at:

EFM VIDEO TUTORIALS - Setting up EFM App on Android Tablet

app on your Android Tablet. Videos on YOUTUBE, or accessible from www.WfllGER.ner Make sure to take advantage of video tutorials on initial setup and planning of EFM system

Simply input your implement size and layout and receive a parts list & quote. Simple as that. Use the new EFM system parts kit builder available at www.wilger.net.

your EFM system liquid kit on www.WILGER.NET

Build

Wilger Electronic Flow Monitoring System App

Product 2 & 3 Setup: [Optional if using multiple products]

Set Product 1 Outlet spacing
Prod 1 Alarm threshold
Jet selection
(Color of jet used in flowmeter)

Product 1 Setup:

EFM System App Preview - Setup & Go

Download the Wilger Electronic Flow Monitoring System App.
 (GooglePlay Store, or APK download from www.wilger.net/efm.apk)

Electronic Flow Monitoring System Setup

(E) ECU Setup Page

ECU WIFI Password

of nodes connected to system

Serial # on ECU case [IMPORTANT]
Single or Multi-Product/screen

Set to # seconds for page scroll

Off

US GAL/MIN

Serial number may have 7-9 digits]

Preferred Flow UNIT

Leave at default 120

Product (Max 196 Runs

Preferred Application Rate UNIT

Set Fixed Application Speed

Kph

Mph

men mm

16,00

Inch mm

10

Inch mm

- Power up ECU, connect tablet to ECU WIFI, and complete ECU setup, including specifying product-specific alarm, outlet spacing & jet selection.
- (WIFI password is ECU serial number; eg. "WILGER_EFI_1234567"; ECU serial number may be between 7-9 digits.
- Set row/outlet locations (on screen) by pairing row # and physical location of sensor (which node/cables it is connected to). Customize page layout by preference (group balls by sections or any other layout by user preference).
- System will now monitor each individual flowmeter individually (on detailed snapshot screen and alarms), by product (with visual balls), and as a whole system.

(1-4) the sensor is connected to 10 Populate each row of info (corresponds to 1 ball, and up to 24 balls/section) for each sensor used in the system Sensor # (SNR) - 1/2/3/4 Select the cable number Change 6 1-10 tabs for Section Screens [Multi-Product/Screen View] 1-3 tabs for Product Screens [Single-Product/Screen View] Select the node harness letter the sensor is connected to. Divider Letter (DIV) - A/B/C/D: default 0 Product 1-3 Selection & Label Setup sensor is connected to. Set to N/A for blank slot. Electronic Flow Monitoring Sensor Setup m Node Number (NODE): Select the node # the Sensor Setup Page Row Label: Name the sensor by outlet # or name (max 3 characters) Sensor Setup Area: 2 Product 3

Now that basic setup is complete, explore the individual row detailed screens, application widgets, advanced calibration screen, and equipment profile saving/recalling as well

Wilger makes spray tips for applicators who care about how they spray.

Wilger makes nozzle bodies & components that address and support best practices being developed in the crop protection industry.

Wilger makes flow monitoring & metering components that are critical to maintaining effective and consistent application.

CANADA Wilger Industries Ltd. Site 412, Box 280, RR#4 Capital Circle W & Auction Mart Rd. Saskatoon, SK, Canada S7K 3J7 Phone: 1 (833) 242-4121 Fax: (306) 242-4122 Email: info@wilger.net

UNITED STATES
Wilger Inc.
255 Seahorse Drive
Lexington, TN, USA
38351-6538
Phone: (877) 968-7695
Fax: (877) 968-7613
Email: WilgerEsc@WilgerEsc.com

ARGENTINA
Wilger Argentina
Mitre 699
San Nicolas (2900)
Buenos Aires, Argentina
Phone: +54 9 336 4596710
Email: cjporras@gmail.com

Focused on Application
Performance for
Over 45 Years

All Wilger trademarks and logos are owned by Wilger Industries Ltd. All other brand or product names are trademarks or registered marks of their respective owners. All rights reserved.